
D-iL 8B ANALYTICAL PREDICTION OF TURBULENT HEAT TRANSFER
~~~~A~i~89 PRAMETERS(U) DUKE UNIV DURHAM NC DEPT OF MECHANICAL S

ENGINEERING AND MATERIALS SCIENCE A BEJAN APR 85

UNLSSIFIED DU-RB-1 NOSS14-79-C-686 F/ 8/ NL

UNLA som ommo 2 mll
sommommommomms
lossommommommo



K

I-I

11111 1 ' .
111 __ 1 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

r'

,5.,

, ,

4.%

*
B

5.. -.. .. ,o..- -*.. . - -.-. -,' . . . . . . . . . . . . . . . . . . . ...-... . . . . . . . . . . . . . . . . . . ..'. •..'.. . . .- .,.-.-, .-. - .. - ... -
. . . . = ° ... . ... . . . ,r ,= ,= , • = .• l- . . = •.. . . . . . .-. o.-.. . . . . . . . . . . . . . ..-.. . . . . . . . . ., . . .



6,-

Department of Mechanical Engineering and Materials Science

0Analytical Prediction of TurbulentF* Heat Transfer Parameters

-The Final Report-
(0m 

Adrian Bejan

,
DU-AB-I April 1985

Duke University
School of Engineering

Dut, Nofth Cona 17706 ~ DECO 2 198E

I'.PTDIBUTION STATEMENT A
Approved for public releosel

Disthibution Unlimited

85 11 2C C02
.... . . .



pm.

Analytical Prediction of Turbulent

Heat Transfer Parameters

-The Final Report-

Adrian Bejan

DU-AB-I April 1985

l'DTI Q

SDECO0 2 198

Y'
i:' '[ 0

" -

'.4 . . "- " '-:.-:."-'-".". -".,. -w -v '-*;'..':. - -""'.- . " . . : ''' ,,,'-"" '"":'",V:- ?



REPRODUCED AT GOVERNMENT EXPENSE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF. PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

z0

ma 0:

*0 *.. '



Unclassified
SECURITY CLASSIFICATION OF TNIS PAGE (Mhen Dale Entered) . ..

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GoT ACCES ON NO. 3 CIPIENT.S CATALOG NUMBER 4DU-AB-l 0Io103

4. TITLE (andl Subtitle) 5, T PE OF REPORT & PERIOD COVEREDAnalytical Prediction of Turbulent Heat Transfer Final, 10/l/80-9/30/84

Parameters: The Final Report
e Tl6, PERFORMING ORG. REPORT NUMBER

-(7 . AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s)

Adrian Bejan N00014-79-C-0006

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKA REA & WORK UNIT NUMBERS
Department of Mechanical Engineering and Program Element 61153N24Material* Science, Duke University Project RR024-03, Task Area

Durham. NC 27706 RR024-03-02, Work Unit NR09' -43
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research April 1985
800 N. Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217

14. MONITORING AGENCY NAME & ADDRESS(It different (ram ContrallinS Office) IS. SECURITY CLASS. (0f this report)

ISa. DECL ASSI FICATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (af this Reporto

J
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (at the abstract entered in Block 20. It different itsm Report)

Same as Block #16

IS. SUPPLEMENTARY NOTES I

'IS. KEY WORDS (Continue on revere side it neceecary and identtly by block number) N

Heat transfer,"1turbulent flow; irreversibility, buckling theory.--;%

20 ABSTRACT (Continue an reverse aide if neceacery and Identify by black number)

The objective of this research is to construct a purely theoretical foundation
for the phenomenon of turbulent heat transfer. The- present final report

'" surmarizes the reseaxc a mplished during th--ur-vear funded period. The
strategy of this.'research is shown to have":consisted of;Kt) identifying the
domain covered only by the present theory; and.'Al) identifying the intersection

* between the present theory and older theories. A complete summary of published
articles, books, and theses is appended. / ,

" DD ~FoRM 17 f

D I FAN 7 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enteeed)



ANALYTICAL PREDICTION OF TURBULENT HEAT TRANSFER PARAMETERS:

THE FINAL REPORT

April 1985

Adrian Bejan
Professor

Department of Mechanical Engineering and Materials Science

Duke University
Durham, NC 27706

Prepared for

M. K. Ellingsworth Accesion For
Program Monitor

The Office of Naval Research NTIS CRA&I

Arlington, Virginia 22217 DTIC TAB

Unanrounced []._
Justificutio,.--

B y ...... ......... .. .... .............. .. : .

By

Dist ib t ! i c o

Under Contract No. N00014-79-0006, Work Unit 097-431. Approved for public release;

distribution unlimited. Reproduction in whole or in part is permitted for any

purpose of the United States Government.

.77
. .-- . .. ,-.. . .. ° .. - . .. . . .. ., . .-.- * U.. U. .. ,. '.. ,

m° . % 1 ' 7°. - - °. - '. • .' -
°
•..



4L

THE BUCKLING THEORY OF TURBULENT FLOW

The research overviewed in this final report had as primary objective the

establishment of a purely theoretical foundation for the existence of

turbulent flows and engineering formulas that summarize the transport

potential of such flows. From the early research - proposal stage, this work

reflected my view that "tradition" has given us a fluid mechanics research

methodology that is generally divorced from thermodynamics, and, with special

regard to turbulence research, a research methodology that is divorced from

theory. That even the analytical work in 20th century turbulence research is

rooted in empiricism is best illustrated by how the empirical notion of "eddy"

is never questioned and conveniently hidden behind the time-averaged

terminology inherited from Osborne Reynolds.

The present research project was conducted over the three year period

that coincided with the academic years 1980-81, 81-82, and 82-83. A one-year

extension was added to the original contract period in order to facilitate the

completion of ongoing thesis work and my own writings and preparations for

the 1984 sabbatical leave and move to Duke University. Although the actual

work is already documented in detail in the three annual reports E1-3], I

welcome this opportunity to review it one more time and to stress its position

relative to pre-1980 thinking.

The present work - the buckling theory of turbulent flow - departs from

fluids mechanics tradition in two important respects. First, this new theory

focuses on the equilibrium of a finite-size flow system (e.g., jet, wake,

boundary layer), as opposed to the equilibrium of the infinitesimally small

fluid packet used as subject in the Navier-Stokes equations. Second, it

relies on the thermodynamics inspired idea that the flow system possess

conservative mechanical properties (e.g. elasticity in bending) if it is

1
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inviscid.

The analytical conclusion of the buckling theory is that an inviscid

stream of finite transversal dimension D can buckle into a sinusoidal shape

whose longitudinal wavelength XB scales with D. In this manner the buckling

theory unveils two obvious but previously unexplained scales of the stream,

the buckling (meandering) wavelength XB and the time scale associated with the

growth of the deformation (i.e., the time of eddy formation) tB -B/(V/2),

where V is the longitudinal velocity scale of the flow. This new theory is

therefore a theory of large scale orderly structure in turbulent flow.

The buckling theory - its enunciation, experimental verification and

application to heat transfer engineering - has been published extensively

through three equally important channels of peer review: journal articles,

-i listed chronologically as Refs. [4-15], graduate these [16-20] and books

* [21-23]. The permanent contact with the research community is greatly

responsible for the diversity of the topics studied from the point of view of

* stream bucklirg, and for the balance between the theoretical and experimental

* segments of this study.

The strategy that served as guide for the definition of individual

*" research topics during the four-year period consisted of identifying:

I. The boundaries of the new theoretical viewpoint, i.e., how

far the theory extends into the territory that is not

explained by any existing theory.

II. The intersections between the buckling theory and existing

theories, i.e., pinpointing the phenomena that are explained

by two theories.

If the domain labeled B in Fig. 1 represents the territory discovered until

2



theory s theory B

Figure 1. Charting the domain seen from a new theoretical point of view, and
discovering the intersections with domains covered by older
theori es.
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today from the point of view of Buckling theory, and if the domain S

represents the things explained by an existing theory (e.g., hydrodynamic

Stability theory), then the phenomenon plotted as point I is an example of

work done on front (I). Specific examples of advances of type I are the

explanation of the observed sinusoidal deformation during the transition to

turbulence* (Ref. [22], chapter 6), the Colburn analogy between momentum and

heat transfer in turbulent flow (Ref. [22], chapter 7) and the "entrainment

hypothesis" or the linear time-averaged growth of all turbulent mixing regions

(Ref. [22], chapter 8).

The intersection between the new theory and an existing theory is

represented by points labeled II in Fig. 1. One discovery of type II is the

notion that the transition to turbulence in flows of many geometries and

origins is associated universally with a "local Reynolds number" of order

0(102) (Ref. [22], chapter 6; the "local Reynolds number" is based on the

local longitudinal velocity scale and the local transversal length scale).

Although this apparently universal criterion of transition to turbulence is

consistent with both theories [10,11], it was first stated in the realm of

buckling theory [4].

As a second example of an advance of type II - this time an observation

explained by both S and B, but historically stated first in S - I use this

opportunity to communicate that the classical Richardson number criterion

regarding the instability of a density-stratified flow follows in very few

steps from the main result of the buckling theory. Consider the inviscid jet

of transversal length scale 0 and longitudinal velocity V sketched in Fig. 2.

According to the buckling theory, since the stream is inviscid it has the

The theory of hydrodynamic stability cannot explain this observation:

recall that in stability theory the "disturbance" shape is arbitrary and
assumed given.

4
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Figure 2. Determining the criterion for stability in density-stratified

.- inviscid shear flow via buckling theory.
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property to buckle with a longitudinal wavelength XB: as demonstrated in

chapter 4 of Ref. [21], the subsequent and certain instability of the

infinitesimally buckled stream can be thought of as the effect of the lateral

net force Fup that acts on a control volume (elbow) of height D and length

XB/ 2 ,

Fup pV2 D. , (1)

where the angle a is infinitesimally small.

The lateral instability and eventual roll-up (eddy formation) may not

occur if the flow proceeds through a stably stratified environment

p(y) p by , (2)

where b - dp/dy > 0. In such cases the finite-size control volume will be

pushed down by a restoring force of order

Fdown " XBDgAp (3)

where Ap baXB is the density defect scale of the control volume.

The condition for stability can then be written sequentially as

Fdown > Fup (4)

XBDgbaXB > pV2 Da (5)

> (D)2 (6)

The left-hand-side in this inequality is the Richardson number. According to

the buckling theory the right-hand-side is always a constant of order 0(l).

In conclusion, the stability criterion via buckling theory is

Ri > 0(l) (7)

.- 6



The same criterion is a classical result of hydrodynamic stability theory,

however, the analysis summarized as eqs. (1) - (7) is orders of magnitude

simpler than the corresponding hydrodynamic stability analysis.

In conclusion, in Fig. 1 the Richardson number criterion (7) is covered

by theory S and B: this, however, does not mean that theory S alone (or

theory B alone) explains everything about transition in stably stratified

shear flow. For example, theory S still does not explain the regular

sinusoidal deformation that serves as initial condition for hydrodynamic

instability.

The work started on fronts I and II is far from over. The success of

buckling theory and the fact that none of the claims made so far on behalf of

this theory have been proven false in the post-1980 literature, are two good

reasons why this theory will continue to attract attention. Considering the

naked simplicity of buckling theory, and recalling the thermodynamics orgins

of the essential idea, I invite my colleagues to join in this research and to

give new life to the words spoken once by Josiah Willard Gibbs:

"One of the principal objects of theoretical research in

any department of knowledge is to find the point of view

from which the subject appears in its greatest simplicity."

Adrian Bejan
Duke University
April 16, 1985
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I.

ON THE BUCKLING PROPERTY OF INVISCID JETS AND

THE ORIGIN OF TURBULENCE

Adrian Bejan
Department of Mechanical Engineering

University of Colorado, Boulder, Colorado

(Cormmnicated by J.P. Hartnett and W.J. Minkowycz)

AP STRACT
This letter outlines the analogy which exists between inviscid jets
and elastic columns in axial compression. It is shown that straight

" inviscid jet columns possess the property of sinusoidal infinitesimal
buckling. The buckling wavelength scales with the transversal dimen-
sion of the jet. The repeated buckling and breakup of the jet column
is responsible for the observed whiplash motion of turbulent jets.
The buckling theory predicts correctly the natural frequency of the
whiplash motion and the Reynolds number for the laminar-turbulent
transition in free jet flow.

Introduction

One aspect of jet turbulence receiving increased attention is the large

scale "orderly" structure with a length scale of the same order as the jet dia-

'I meter. Crow and Champagne (1] showed that as the Reynolds number increases frcm

% 102 to 10 , the whiplash motion of jets evolves from a sinusoid to a helix and

eventually to a train of axisymmetric waves. Similar observations have been re-

ported by Reynolds [2]. The characteristic snake-like shape of a turbulent

round jet is shown very clearly in Fig. 1.

The purpose of this letter is to offer a theoretical explanation for the[5
observed large-scale periodic structure of turbulent jets. The explanation is

founded on a very interesting analogy which exists between jet flows and slender

elastic columns in axial compression (4]. It may be recalled that Euler's

theory of infinitesimal buckling (indifferent equilibrium) in axially compressed

columns rests on only two premises [5,6]:

187
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188 A. Bejan Vol. 8, No. 3

FIG. I
The characteristic meandering path of a turbulent jet (after Yih [3]).

ambient control surface

----------------------------------------------- -- -- ----

jet

control volume

N0  N x

FIG. 2
The static equilibrium of the envelope surrounding a straight jet.
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(i) the slender column is straight and in axial compression;

(ii) if subjected to a separate bending test, the column develops in its

cross-section a resistive bending moment which is proportional to

the induced curvature.

Slender elastic columns, of course, meet these two conditions. 1owever, it is

shown in the next section that exactly the same conditions are met by inviscid

streams discharging freely into larger reservoirs. Consequently, the column

(control volume) occupied by an inviscid stream buckles sinusoidally, and the

stream mixes periodically with the stagnant ambient. From this result, we con-

clude that the natural property of inviscid streams is to follow a sinusoidal

(meandering) path as they travel through a stagnant ambient. This natural

property of inviscid flow is the basis for the unexplained turbulent behavior

of fluids.

The Static Equilibrium of the Jet Envelope

Consider a straight inviscid jet of density p , uniform velocity V and

cross-sectional area A, as shown in Fig. 2. The static pressure inside the

jet and in the ambient fluid is P . Imagine now a stationary envelope

(control surface) which surrounds a certain length of the jet. This envelope

and two transversal end-cuts define a stationary control volume.

In the spirit of the thermodynamics of open flow systems [7], the only

forces which act on this control volume are the inlet and outlet compressive

forces

C = p A V2  (i)

Forces C are shown schematically in the lower half of Fig. 2 where the control

volume is symbolized by the solid line. At this point we conclude that the

fluid-filled column represented by the control volume satisfies condition (i)

for buckling.

When the control volume is slightly curved, each face of the transversal

cut is exposed not only to a compressive force but also to a bending moment.

Consider the separate bending test in which the je- is held (forced to flow) in

.- .a slightly curved duct. The radius of curvature of the duct, R , is infinite-

ly greater than the transversal dimension of the jet, D. Bernoulli's equation

for a streamline [8] dictates

1 - 2 + 1 . 2
2 0 2 P v (z) + P(z) (2)

j
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190 A. Bejan Vol. 8, No. 3

where the right-hand-side of the equation corresponds to the curved duct.

% Coordinate z is measured radially from the jet centerline tcwards the center

of curvature. Radial equilibrium of the jet fluid in the curved duct requires

" - also [9]
2

pv (z) _P 3)
' R.

In the limit of vanishingly small curvature, D/R - 0 , equations (2) and (3)

yield

v(z) = V(l + Z (4)

V2z

P(z) = p- (5)
o R

The bending moment acting over the cross-section is

2 V2
2M + P) z dA = _ (6)

A

where *I = ff z2dA is the area moment of inertia of the jet cross-section.

A

In conclusion, the cross-sectional bending moment M of a nearly straight

jet column is proportional to the curvature of the column, fiR/ . This means

that the inviscid jet column satisfies condition (ii) for the infinitesimal
'. buckling of a straight column.

Consider now the static equilibrium of the straight jet envelope shown in

Fig. 2. Clearly, the axial comoressive forces C balance each other. In

addition, the excentricity bending moment CY -- however small -- must be

balanced at all times by the cross-sectional bending moment 1I0]

CY + M - M(x) = 0 (7)

0. i ! Noting that 1/R = -d2Y/dx2 , the rotational equilibrium condition (7) consti-

tutes a differential equation for the equilibrium centerline Y(x)

2"d 2 Y 2pV1-- +pVAy +M =0 (8)
dxo

The solution satisfying the nozzle conditions Y = Y= 0 at x = 0 is

Y(x) = K[cos(xv'F) - 1] (9)

-U.,

• . .4 , ...'.." ..-.,. ' .: r -" " " " ' / . , ' " 2 " " -.- " ' ' " ' " . .. '- . . " , " " " ' ; " ' 3



Vol. 8, No. 3 ON TFM BUCKLING PROPERTY OF INVISCID JETS 191

where the amplitude K is indeterminate and infinitely small compared with the

transversal length scale vi ' or D.

we arrive at the important conclusion that the equilibrium centerline of

the jet envelope is a sinusoid of infinitely small amplitude. The wavelength

of this trajectory scales only with the transversal dimension of the jet,

X = 2Tr/I- (10)

For example, /f/D = 7/2 for a round jet of diameter D, and I/D = 1// for

a flat (two-dimensional) jet of thickness D. An analysis of the meandering

contour of the round jet of Fig. 1 yields A/D A 1.2 which is in good agreement

with the theoretical value of 1.57 (it is very likely that the 24% discrepancy

between the two values is caused by the fact that the contour shown in Fig. 1

overestimates the real diameter of the turbulent jet).

Formation of Large-Scale Vortices

The analogy between the infinitesimal buckling of elastic columns and in-

viscid jet envelopes terminates with the equilibrium centerline given by equa-

tion (9). Whereas in slender elastic columns the equilibrium of the small-

amplitude sinusoid is indifferent [10], in an inviscid jet the equilibrium is

unstable. The unstable equilibrium of the inviscid column is described very

well by the classical theory of hydrodynamic instability [11]. The slightest

deviation of the jet from its rectilinear shape leads to the formation of

lateral "lift" forces which consistently tend to amplify the deformation. As a

result, the inviscid jet breaks up periodically as its overextended elbows

penetrate and mix with the stagnant ambient. The degenerated elbow region

becomes a "large scale turbulent structure" (1] which continues to move down-

stream with a speed of order V/2.

The repeated buckling and breakup phenomenon accounts for the observed

whiplash and fluctuating motion of turbulent jets. The period of this fluctua-

tion scales with the buckling time t. = A/V , i.e., with the time of fluid

travel between successive elbows (breaks) in the jet column. The natural fre-

quency of jet fluctuation can be expressed in dimensionless form as a Strouhal

number

D D
St = tBV  - ( i)

which, as shown in the preceeding section, has a value of order 0.5. This order

%0
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of magnitude estimate agrees very well with experimental measurements of the

natural frequency of turbulent jets exposed to a range of external excitation

frequencies. For example, Bechert and Pfizenmaier [12] reported St = 0.5 for

maximum amplification of broadband jet noise. Most recently, Acton [13] con-

ducted a computational simulation of a round turbulent jet by modeling the shear

layer as a succession of discrete vortex ring elements. Acton showed that the

natural periodicity of the round jet was St & 0.47 , and that the jet was most

sensitive when forced at approximately the same frequency (St = 0.5).

The Transition to Turbulence

The buckling property and fluctuating nature of inviscid jets provide a

theoretical basis for predicting the transition to turbulence. The transition

from laminar iet flow to turbulent flow occurs when the stationary ambient is

no longer capable of viscously communicating with the jet. The viscous commu-

nication time between the jet-ambient interface and the jet centerline follows

from Stokes' first problem [14]
D2

t = . (12)
v 16v

The jet is free to buckle, i.e., to get out of hand, if the viscous diffusion

time tv is longer than the buckling and breakup time tB' Defining the

buckling number N as the ratio of these two characteristic times of the flow
B

configuration,

t-~ v
N = 1K I I , (13)
B t B

we have a criterion which predicts the fluctuating (turbulent) behavior of the

jet. Using equation (12) and t = X/V , the buckling number can be writtenJ B
also as

VD /__ (14)B v 16

For a round jet, the transition criterion NB > 1 becomes
B

> 25 (15)

It should be noted that this order-of-magnitude estimate of the transition

3 Reynolds number agrees very well with experimental observations. For example,

Viilu [15] found the value of 11.2 for the Reynolds number of breakdown of the

% 1
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steady laminar jet. Viilu's observations were later confirmed by Reynolds [21

who reported the range 10 < Re < 30 for the transition Reynolds number.

The buckling number criterion of transition to turbulence, equation (13),

explains also why the observed transition Re is a number considerably greater

than unity. For a dimensionless group to truly delineate the transition from

one mechanism to another, it must have a value of order one which, after all,
reflects the balance between the competing mechanisms. The Reynolds number is

not the correct dimensionless group to describe transition to turbulence. The
Reynolds number is the experimental (measurable) reflection of the N transi-

B
tion criterion.

Concluding Remarks

This letter unveiled a theoretical basis for predicting the large scale

structure and fluctuating behavior of inviscid jets. The analogy between jet

envelopes and elastic columns in axial compression showed that the natural

tendency of inviscid jets is to buckle over a precise wavelength which scales

only with the jet diameter. The repeated buckling and breakup of the jet column

is responsible for the sinusoidal, river-like, path of turbulent jets and also

for their natural whiplash motion. The predicted natural frequency of the jet

agrees very well with measurements from harmonic excitation experiments.

Finally, we learned that the transition from laminar to turbulent jet flow

occurs when the buckling and breakup time is shorter than the time of visc,,us

diffusion across the jet. This last conclusion is supported strongly by experi-

mental observations.

The buckling property described in this letter emerges as the fundamental

property serving as origin for turbulent motion in inviscid flows.
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Comments on "Viscous buckling of thin fluid layers"
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Suleiman and Munson recently presented a sequence Of fundamental interest are the similarities between

of interesting experiments concerning the buckling of the buckling of a viscous layer (the viscida problem)
thin viscous fluid layers. In their paper the authors and the buckling of a slender elastic column (the elas-

referred to Taylor's observations on the buckling of tica problem). A close examination of the Euler theory

. . slender viscous filaments. 2 His early observations and for slender elastic columns reveals that, for infinitesi-
the Suleiman and Munson experiments point toward an mal buckling, elastic columns must satisfy only two

important analogy between the buckling of elastic col- conditions (Ref. 5, p. 184): (iii) the column is straight
umns and the buckling of viscous filaments in longitudi- and in axial compression; (iv) if subjected to a separate
nal compression. bending test, the column develops a resistive bending

The object of this Comment is two-fold. First, it moment in its cross section which is proportional to
brings oto thieads' C entin t-fo, Ft king the local curvature. The infinitesimal buckling of the* brings to the readers' attention the fact that a buckling straight column follows from invoking static equilibrium

theory of thin viscous layers already exists. Second, forat systm sketched ini F stai t or

it pint ou tht te bcklng o slnde coumn inax- for the system sketched in Fig. 1. For a straight or
it points out that the buckling of slender columns in ax- nearly straight column there are two equilibrium condi-
ial compression is not a property only of elastic solids"-'.. ions to consider. The first is the obvious balance of
and highly viscous fluids, but also a property of inis- compressive forces C in the longitudinal direction.• " ' cid columns (streams).copesvfocsCnthlngudalirton
cdou s(ra)The second is one of rotational equilibrium which states

The buckling of a thin viscous layer was considered that the eccentricity bending moment Cy, however

theoretically by Buckmaster, Nachman, and Ting. 3 small, must be balanced at all times by the cross-sec-
They showed that viscous layers in longitudinal corn- tional bending moment .1I. In the case of a column con-

pression satisfy two basic requirements: (i) the vis- taining elastic material, a special bending test of pre-

cous layer is in axial compression and the compressive scribed curvature (Ref. 5, p. 37) combined with knowl-

force is proportional to the relative velocity between edge of the elastic properties of individual fibers in

the two ends of the layer; (ii) if curved, the viscous the slender column leads to the notion of a cross-sec-

layer develops in its cross section a bending moment tion bending moment proportional to the local curvature

which is proportional to the time-rate of change in the (iv), Combining this notion with the rotational equilib-

local curvature. The momentum equations integrated rium condition yields the equilibrium shape of the st raight

over the viscous layer led Buckmaster, et al. 3 to a column, namely, a sinusoidof infinitely small amplitude.

global equation for the evolution of the layer centerline. The infinitesimal amplitude is indeterminate, hence, the

This equation was solved by assuming various initial equilibrium of the nearly straight elastic column is indiffer-
W,. L. disturbances as the starting shape in the evolution of ent. If present, the slightest lateral force is able to push the

the viscous layer. In a subsequent paper, Buckmaster column away from the straight equilibrium shape into a

and Nachman' have extended this theory to the case nearly straight (sinusoidal) equilibrium shape (Ref. 5,

where surface tension effects play an important role. p. 184).

1764 Phys. Fluids. 24(9), September 198 0031 9171/81/091764-02S00 90 © 1987 American institute of Physics 1764



finitesimal buckling. The corresponding equilibrium
shape of the column is a sinusoid of infinitely small
amplitude, whose wavelength is

* (a) CX.- - - - . C =-- X=ir (11A) . (3)
X

M Inviscid streams, like elastic rods and viscous lay-

ers, possess the natural property of buckling. The
wavelength of the buckled shape scales only with the
transverse dimension of stream; for example, Eq. (3)
for a jet of round cross section, yields X/D = v/2. Un-

T like buckled elastic columns, whose equilibrium is in-
b) o-- -- - different (Ref. 5, p. 184), buckled inviscid columnsare unstable. The post-buckling evolution of the invis-

-------- cid column is well understood, forming the subject of
-D - the classical theory of hydrodynamic stability. 9 How-

.I 2 oH ever, the buckling property is to be recognized as re-
sponsible for the wave-like "disturbance" assumed
routinely (empirically) as a starting point in any hydro-ro un j ett~ st j etd y n a m ic s ta b ility a nal y s is .

FIG. 1. (a) Translational and In essence, the buckling property of inviscid streams
slender column (control volume) in axial compression. (b) guarantees that such streams cannot flow straightThe natural buckling wavelength of circular and two-dimen- through another fluid or through a flexible duct. This
sional inviscid Jets. new property of inviscid fluids stands at the very root

of the phenomenon of turbulence. For example, the in-

teraction between the elbows of the buckled stream and
Ithe stagnant medium leads to the periodic formation ofnthsdiscussion it is important to include the case

n f l o l nlarge eddies. These large-scale turbulent structures
are responsible for the river-like shape of turbulentbuckling of type (i, ii) or to buckling of type (iii, iv)? jets, wakes, and plumes: It is widely observed that the

Thermodynamic reasoning alone suggests that inviscid wavelength of this large-scale meandering path scales
columns should buckle according to model (iii, iv) be- with the diameter of the stream, as predicted in Eq.
cause, like elastic solids and unlike highly viscous flu- (3). The natural buckling of inviscid streams is par-
ids, inviscid fluids are free of entropy generation. 8 ticularly visible in the case of streams flowing within

Referring again to Fig. 1, we note that a column con- flexible boundaries, like rivers and capillary rivulets
taining inviscid fluid is none other than the imaginary at high Reynolds numbers. The buckling property
control surface drawn around an inviscid jet flowing serves as the theoretical basis for predicting other
through an inviscid fluid at rest. Since the column is turbulence parameters, for example, the natural fre-
stationary, its equilibrium is described by the two quency of turbulent jets (the Strouhal number) and the
static conditions (force and moment) discussed in con- critical Reynolds number for transition to turbulence. 8
nection with the Euler buckling of elastic columns.
The remaining problem is to determine what special
forms C and A[ take in the case of inviscid stream col-
umns. For the compressive force on the control vol-
ume, C, we know from the thermodynamics of open
flow systems thatT 'S. M. Suleiman and B. R. Munson, Phys. Fluids 24, 1

2 (1981).C = pA V, (1) 2G. I. Taylor, in Proceedings of the 1 h Congress of Applied
where p,A, V are the density, cross-sectional area, Mechanics, Stanford, 1968 (Springer-Verlag, Berlin, 1969),

p. 382.and velocity of the stream. In order to determine the 3j. D. Buckmaster, A. Nachman, and L. Ting, J. Fluidcross-sectional bending moment M, we conduct a spe- Mech. 69, 1 (1975).
• cial bending experiment where the inviscid stream is 4J. D. Buckmaster and A. Nachman, Q. J. Mech. Appl.

held in a duct of known radius of curvature, R.. In the Math. 31, 157 (1978).
limit of vanishingly small curvature, the Inviscid flow 5J. P. Den Hartog. Stregth ofMaterfals (McGraw-Hill,
equations show that the resistive bending moment in the New York, 1949), p. 184.
cross section is OA. Bejan. J. Heat Transfer 101, 718 (1979).

7A. H. Shapiro. The Dynamics and Thennodynamics of Corn-M = - 0I/R,, (2) piressible Fluid laIt (Ronald, New York. 1953), Vol. 1,
p. 225.where I is the area moment of inertia of the cross sec- 8A. Dejan, Letters in Heat and Mass Transfer 8. 167 (1981.

tion (Ref. 5, p. 37). Equations (1) and (2) show that SL. Prandtl, Essentials of Fluid Dynamics (Blackie and Son.
inviscid fluid columns obey conditions (iii, iv) for in- London, 1969), v. 51.
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The meandering fall of paper ribbons
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This paper discusses experimental obserations of the meandering fall of light-weight tissue paper ribbons.
The photographs show that the ribbons assume a sinusoidal shape with a unique wavelength which scales
w ith the thickness of the airstream entrained by the ribbon.

The objective of this paper is to present a series of The key measurement facilitated by the fall.ng-ribbon
interesting experimental observations concerning the experiment is that of the meander wavelength. Measur-
meandering motion executed by highly flexible ribbons ing the distance between the elbows of the sinuous shape
failing through the air. The experiment consisted of of Figs. 1(a) and 1(b), and averaginz these measure-
dropping a length of light-weight toilet tissue paper meats over the sinuous portions of each ribbon, yields
through the air and photographing its shape as it falls the wavelengths listed under As in Table I. The rela-
to the ground. The reader may take note of the fact that tively small standard deviations of these measurements
this falling-ribbon phenomenon occurs naturally when indicate that the elbow-to-elbow distance does not vary

excited sports fans launch rolls of tissue paper from the appreciably along the wavy portion of the ribbon.
stands onto the playing field. Another natural phenome- The effective thickness D, of the air stream entrained

* - non related to the falling-ribbon experiments described The rio cne alculte ae ote entrowindr " n tis pperis he "avig o flas ' ' an the"vira- by the ribbon can be calculated based on the following
in this paper is the "waving of flags"hI and the "vibra-
tion" of tape drives used in the computer technology. 2  energy-conservation argument. During its steady fall at

The classical prespective in the study of flag waving terminal velocity U, the ribbon weight W performs the

falls in the realm of hydrodynamic stability theory, mechanical work WAL on its ambient; AL is the linear
[ " increment in downward travel, equal to Uat, where At

"-*" where one questions the stability of the flexible solid
surface. The starting point in the stability study is the
assumption of an initial deformation of arbitrary wave-
length.

In the present experiments, ribbons of various lengths
were dropped from heights in the range 3-7 m, through
the quiescent air of the laboratory. The time of free
fall was measured with a digital stopwatch; it was found

that the ribbon reached its terminal velocity very quick-
ly, therefore, the free-fall velocity U could be deter-
mined by dividing the total travel by the measured time
of free-fall. In order to force the ribbon to fall "head

first," one end was loaded with a lead refill for a mech-

anical pencil.

This simple experiment was repeated many times and,
in all cases, the photographs showed that the falling

ribbon acquires a sinuous shape: the wavelength of this
shape was the same for all the cases involving a ribbon
of fixed length. Figures I(a) and I(b) show very clearly
the characteristic sinuous shape observed in these ex-

periments. A longer ribbon [Fig. lIb)] exhibits a rela-
tively longer wavelength.

Another important observation is the fact that the sin-
uous shape travels as a solid body downward, at a speed
of order U, 2, where U is the speed of the tissue paper
itself. The wave speed was measured photographically,
as shown in Fig. 2. This photograph was obtained with
the shutter open in complete darkness, while lighting

the falling ribbon with a strobe light three times, at J
precise time intervals It =0.025 sec). The fact that the
sinuous shape travels at half-speed is strong evidence
that the sinuous shape is produced not by the tissue pa- a

per, but by the airstream whose centerline moves at FIG. 1. (ai Fall of a 1.25 m ribhon of tissue paper. ,hi Fail
top speed U through an ambient at rest. of a 1,83 m rihbon of tissue paper.
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SHAPE 1
TRAVEL 2.

3 ~ PAPER

TRAVEL
FIG. 2. Superpostti,,n -f three n:~avts
durianz the fall jf tie 1.5rn rti n.
showing that the Sinous shap~e fis t-a !

3 a3s fast as the rii.hon material.'

TABLE 1. Laboratory measurements of the meandering wavelength of the invi1scid air stream
driven by a falling ribbon.

Ribbon dimensions Terminal Meander Effective
length x width Total weight speed wavelength air-stream

*Experiment L xb 1cm?) 117g) U(m/s) XB (cm) thickness
D, (c m)

Fig. 1 (a) 125 x11. 4 3.21 2. 9 3 t0. 15 15. 5 t:1. 3 5. 5 0. 56

*Fig. I1(b) 183 x11. 4 4.971 3. 04 t . 09 2'S t 1. 7. S6 ±0. 46

is the time increment. The work done by the weight is thickness (D) and "buckling" wavelength_(09). For a

*first converted into the kinetic energy imparted to the two-dimensional stream one finds D =(Y 3, -''B which -

airpacket pierced by the tip of the ribbon during the agrees in an order of magnitude sense with the nieas-
time at (at the same time, the ribbon-air train sheds a urements listed in Table 1. Additional evidence sup-
moving air packet of the same size: the kinetic energy porting this explanation is the fact that, from Fig. I (a)
of this air packet is eventually dissipated in the wake). to 1(b), both X8 and D, increase.

* Equating the two energy increments, we write

* IAL=(DLb)(U '2) or D, = 2(Wi p~h) , (1) ACNWEDMN

where b is the ribbon width and p is the air density.ThsreacwokasupredbteOfiet

The results of this calct. ,tion are listed in Table 1.aalRserh
* Clearly, the meander waveleni~th scales with the air
* stream thickness.

A posibl exlanaionfor he boveobsrvatonsI . . anm' If Irodv,omo. Dover. Ne%% Y' 'Fk, 191., P. 174.
A posibe eplaatin fr th abve bsevatonsS. K. !atta and W, G. Gottenhurz, J1. Appi. Mlech. 97,

miay be offered based on the bucklingi theirv at inviscid -,II.
streams. % One key result wt thin t h# rv is the univer- A,. li,.jan, Lett. Ileat Mlass I rinsiur 8. 1-7 19-1I
sal proportionalitv which must exi.At bvt.-ktl n irvani 'A. Bejan, ilhvs. FHuids 24. 171A t~
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-'.

Abstract. This paper advances a theoretical a characteristic (unique) range of values,
explanation for the lateral periodicity and geo- contrary to the statistical evidence compiled

. metric similarity of meanders observed in rivers of over natural streams of widely varying sizes
many sizes. Invoking the static equilibrium of a (Leopold and Wolman 1960). This limitatiou is
-traight river bed, it is shown analytically that accepted from the start by every stability
the equilibrium shape of the bed is a unique analyst who postulates the existence cf distur-
siaiusoid. The theoretical wavelength of the bances of every wavelenpch and then tries t.

sinusoidal shape is proportional to the width of identify which of these disturbances will
the river, in agreement with visual observations develop the most rapidly.
of rivers of all sizes. Inasmuch as the constancy of the ratio NjW

appears to be an intrinsic property of all
1. The Geometric Similarity of River Meanders streams, the stability theories explain the evolu-

tion (behavior) of existing meanders but not their

The most basic feature of the meander phenomen- origin.
on is the proportionality between meander wave- The theory constructed in this paper addresses

* length X and stream width W (Leopold and the question which has not yet been addressed,
Wolman 1960). As concluded in a recent review namely, why does a straight (undisturbed) river
article (Callander 1978), significant theoretical choose a sinuous shape of precise wavelength? Ze-
progress has been made in the direction of ex- fore presenting the theoretical answer to this
plaining the occurrence of meanders and accounting fundamental question, the author finds it neces-

T. for measured meander parameters. The theories sary to review a class of very useful experiments
" developed over the past thirty years have in which shed light on the natural properties of the

,.. common the thinking framework offered by the (river)-(flexible bed) system.
[../' Theory of Hydrodynamic Stability: according to

'~< this approach, one analyzes the stability or in- .2. The Stream Plate Experiments
Sstability of sinusoidal waves (disturbances)

superimposed on the straight river flow. As The original stream plate experiment was
summarized by Parker (1976), consideration of proposed by Tanner (1960) as a means of visual-

*-'., gravity waves led Werner (1951) to the conclusion izing the natural tendency of streams to meander.
that )/W-2F, where F is the flow Froude number. The same technique u s used in a comprehensive
Hansen (1967) posed the linearized stability study by Gorycki (1973a). The experiment consists
problem associated with a meandering (sinusoidal) of a smooth plane surface which supports a water

'2 disturbance and found X/H = 7 F2 /S, where H is jet flow issuing from a nozzle tangent to the
the river depth and S is the dip angle of the surface. Thus, the stream plate experiment is the
river bed. Anderson (1967) analyzed transverse laboratory version of water tricklings commonly
oscillations and obtained observed on shower walls and car windshields. The

=/W = constant x (F H/W) . A number of improved water columns generated in this fashion meander in
models of hydrodynamic stability have been re- much the same way as rivers do. However, there is

F ported more recently: for example, Callander one important advantage to this experiment, name-
- (1969), Sukegawa (1970), Hayashi (1974), Enge- ly, the opportunity to observe the incipient phase

lund and Skovgaard (1973) and Parker (1976). of the meandering process in a straight jet.
The chief contribution of the theoretical Of interest here are Tanner's and Gorycki's

research reviewed above and, in greater detail, observations, and the clever mechanical analog
- in Callander (1978), is to have shown that the visualized by Gorycki to simulate river meander-

bed of a channel with straight banks is unstable: ing. First, the stream plate visualization of the
since the bed is composed of moving sediment, meander formation process is strong evidence that
the amplitude of a certain class of disturbances the meander is a property of the stream; this

- is likely to grow the fastest. In addition, property is independent of the effects of sedi-
this research predicted correctly the direction ment. In comparing various stream plate experi-
of migration and the downstream wave speed of ments, Gorycki (1973b) argues further that plate
meanders. These conclusions are important and roughness is not necessary for meander formation.
will be adopted without debate in the theory The experiments also showed (Tanner 1962) that
developed in this paper. However, the chief meandering is independent of the secondary flow

, limitation of the existing theories is also or disturbances which may be present in the
S.* important: note should be made of the fact that nozzle. This conclusion is strengthened by the

the ratio /W predicted by hvdrodynanic statement made bv Schumm and Khan (1972) who oh-
. .., stability considerations (Table 1) does not have served meanders made in the laboratory under

straight entrance conditions: "...a perturbation

Copyright 1982 by the American Geophysical Union. or disturbance of the flow may not be an essen-
tial cause of meandering" (GorycKi 1973a, p. 178).

Paper number 2L1032. Corycki presented also a mechanical analog of
0094-i276/82/OO2L-1032S3.00 the river meandering mechanism: he held a slender

831
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TABLE Comparison of the Present Theory with Meander tavelength Observations

Reference X,/W Remarks

present the, ry 2.22 incipient buckling~(absolutely straight stream)

Gorycki (1973a) 2-3 stream plate simulations

Leopold, Wolman and
Miller (1964), 2-3 field studies in straight

a - Leopold and Wolman (1970), rivers
" Duty (1964)

Schumm and Khan (1972) 3.24 ± 0.64 laboratory channel
Table 3 during development

Keller (1972) 3-5 channel experiments

during development

5-7 during late stages of

development

* Leopold and Wolman (1960) 6.5 - 11 natural (long history)

' Table I

piece of elastic (a slender cylindrical column of 3. The Static Equilibrium of a Straight River
- rubber) between two parallel pieces of glass. He

then moved the glass pieces relative to one an- Consider a straight, inviscid, river flow of
other, in the direction parallel to the cylinder uniform velocity V, density c, width W and
axis. As a result, the piece of elastic assumed depth H. The bed of the river is horizontal.
a shape which resembles very closely that of a In the stationary frame of reference of the bed,
meandering stream in a stream plate experiment, the river cross-section exhibits a uniform com-

It is shown in the next section that the pressive stress 0 2 + P 0(z), where P is

mechanism responsible for elastic meandering is the excess pressure
also responsible for river meandering. In Mechan-
ical Engineering, which is the present author's P 0(z) = pg (H - z) (I)

education, the sinusoidal shape of the elastic

column has been explained as the buckling property and g is the gravitational acceleration. The
of slender spaces in longitudinal compression. resultant of this compressive stress, integrated

The buckling of slender columns represents an over the river cross-section, is
* aimportant and voluminous chapter in the centuries- [

old discipline of Strength of Materials (Den C = DV0: WH (I + H) (2)
Hartog, 1961). The theoretical basis for this 2V.

chapter was established by Euler, who pointed out Therefore, in the frame of reference of the bed,
that in order for a slender space to buckle into the straight river is a slender column in longi-
an equilibrium sinusoidal shape it must satisfy tudinal compression. This means that condition
only two conditions (Love 1927): (i) is satisfied. In order to see that the bed,

(i) the slender space must be in a state of as a duct, is in a state of longitudinal compres-
axial (longitudinal) compression. sion, the reader should think of a piece of garden

(ii) the material which fills the space must hose through which the flowrate is high (turbu-
be such that if the space is subjected lent). The hose is pushed axially by the reactive

to a separate bending test of prescribed compressive force associated with the stream
curvature, then the space develops in its leaving through the open end. The same hose is
cross-section a resistive bending moment pushed axially in the opposite direction by the
(couple) which is proportional to the impactive force associated with the stream enter-
local curvature. ing it from the faucet.

The piece of elastic described by Gorycki As shown in Fig. 1, the static equilibrizn of

satisfies the above conditions. But it is impor- the bed requires two statements, one for transla-

tant to keep in mind that conditions (i) and (ii) tional equilibrium (obvious, C E C) and the other

do not refer to a specific material such as an for rotational equilibrium. The rotational equil-
elastic solid: they refer to a space (column) of ibrium condition is made necessary by the fact

finite size. The objective of the following that no straight river is ever "mathematically"

as a slender space, also satisfy conditions (i) subjected to an infinitesimally small couple CY

and (ii) necessary for sinusoidal buckling, due to the imperfect colinearity of the axial
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forces C. The rotational equilibrium condition
is (Den Hartog 1961) ;H

CY - M! + M!. - 0 (3)1----

where M is the c¢upie acting over the river W-W/2 "/12

cross-section.
It is easy to show that tihe river column also R

satisfies condition (ii), or that a net couple M
s present whenever the column Y(X) is locally Fig. 2. Cross-section through the ri'er.

curved. Consider a separate bending test in j,
which the river radius of curvature R is infin-
itely greater than the river width W (Fig. 2). proves that rivers also obey condition (ii) for
The new velocity V and pressure distribution P sinusoidal buckling.
in the cross-section can be determined immediate-
lv from Bernoulli's equation (Prandtl 1969) 4. The Natural SinUsoidal Shape of Rivers

In the limit of infinitesimally smalloV2 + P = + PO (4) deviations from the rectilinear shape, the river
-2 curvature I/R_ is equal to -d2Y/dX2 . Based on

this approximation and equation (9), the static
combined with a local force balance in the radial equilibrium condition (3) becomes
direction y (Prandtl 1969),

oV =p CY + i OVO2 HW3 Y" + M0 = 0 (10)- (5)
R3y

The general equilibirum shape of the river bed
In the limit of vanishingly small curvature, follows from equation (10),
W/R _ 0, we obtain

V=o (1 - - ) (6) Y(X) = cos(2- (11)
R

P = oV 0

2  + ,pg(l -z). (7) where the wavelength X has a precise value given
R by

A related result is that the free surface zf(y) W [2 + (12)
acquires a slight tilt

V VY For shallow rivers and for stream plate simula-

Zf(y) = H + gR (8) tions (gH/V0
2 

<< 1) we find

Due to the slight tilt, the center of mass of the 7 _ 2.22, universal constant (13)
cross-section shifts from y = 0 to 1

' y = V32W2 /(12gHR), where y. << 14.
According to the standard methods of mechanical .-

engineering, the net bending moment M about the In conclusion, the natural (equilibrium) shape
vertical line passing through the center of ms of the river bed is a sinusoid whose wavelength
of the cross-section is is a precise multiple of the river width. The

amplitude of this shape is unknown (infinitely

small), because the analysis leading to equation
y=W/2 z=zf(y) PV 2HW1 (12) invoked the static equilibrium of a straight

_-_f river. It is well known, however, that the
S(pV 2+p) (Y-Yo) dzdy = - 8R equilibrium of a nearly straight river bed is

Y--W/2 z=O unstable (cf. Hydrodynamic Stability Theory,
(9) Section 1) and that the highly regular, sinuous,

This result demonstrates that the river cross- shape determined here is destined to grow in

section experiences a bending moment as soon as amplitude.

the river trajectory has curvature. Equation (9) 5. Conclusion

1. t The fundamental contribution of this

theoretical argument is the prediction of a
universal proportionality between meander wave-

S.length and river width, equations (12, 13). This
N< -... -- - prediction is supported strongly by observations

of meander formation in straight rivers and in
Fig. i. Static equilibrium of a straight river stream plate experiments. Attention is drawn
bed (view from above), first to the stream plate experiments (Gorycki

Fig.'
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.973a, p. 179, Figls. 3, 8, 9, 10, 13) which J. Fluid Moch., 57, 2d- _L-2 (1)73).
conclusively show "that the spacing between the ;orycli, M. A., Hydraulic Jrac: -i :..'er
:sinuous curves or point bars in straiRht streams initiating mechanism, ... .. :.. '
is Ipproximately two to three times the stream 84, no. 1, 175-186 (197,1).
width", as in equation (13). Similar values of t;orycki, M. A., Hydraulic drac: a me:ander
,iW in :straight rivers were reported by numerous initiating mechanism: Rc,':, P . d . .v

"id studies; for ex.mple, in leopold. Woiman and 3ull., 84, no. 9, 3!9-112 l)7 h
.illI er (1964), Leopold and Wolman (1970, Iic. 7.S) liHansen, E. , The formation of meaner, ..

and Durv (l96%,, Fi4s. 26, 28). .% ratio ./,W be- stability problem, Hydraul. lab. [c. . .

wcen 2 and 3 appears to be a universal feature of Denmark, Basic Res. Proc. Rep. no. 12 ;1 .o).
all straight streams. Keller (1972, p. 1534) Hayashi, T., The formation of menanders in r.'er .
showed that only in the late stages of meander Proc. Japan Soc. Civil Encrs., no. 180 1'970).
de'.'elopment "./W reaches values in the range of Leopold, L. B., and Wolman, M. G., River mean2ers,
5-7, whereas during development the ratio i/W is Bull. Geological Soc. America, 71, 76s-79-
in the range 3-5. 1960).

Table shows a summary of experimental obser- Leopold, L. B., and Wolman, M. (., River -..innl
vatlons next to the constant ratio /W predicted patterns, in Dury, G. I., ed.. Rivers an) ) iver
by the present theory of river buckling. The Terraces, Praeger Publishers, New York 1970;.
present theory agrees with observations made in Leopold, L. B., Wolman, M. G. and Miller, j. P.,
straight or nearly straight rivers, which conform Fluvial Processes in Geomorpholoeg, W. H.
to the type of system selected here for analysis Freeman, San Francisco (1964).
in Section 2. Table 1 shows also that, as time Love, A. E. H., The mathematical theory of
passes, the ratio ,/W increases from the initial elasticity, 4th ed., Cambridge University Press,
theoretical value (2.22) to the natural (long- Cambridge (1927), p. 3.
history) value of approximately 10. Thus, the Parker, G., On the cause and characteristic scales
present theory offers a concise explanation for of meandering and braiding in rivers, J. Fluid
the origin of meanders in straight rivers. Mech., 76, 457-480 (1976).
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The nonaxisymmetric (buckling) flow regime of fast capillary jets
Michael G. Stockman and Adrian Bejan
Department of Mechanical Engineering. University of Colorado. Boulder, Colorado 80309

(Received 16 December 1981; accepted 5 May 1982)

This paper reports an experimental study of the nonaxisymmetric flow of a fast liquid jet
discharging into the atmosphere. The nonaxisymmetric shape of the jet was photographed and
subjected to a wavelength analysis. The results of the wavelength analysis demonstrate that the jet
shape is governed by a narrow band of wavelengths associated with a characteristic value All
which scales with the jet diameter D. It is shown that the experimental observations are in
agreement with predictions based on hydrodynamic stability theory and buckling theory.

I. INTRODUCTION regime, the nonaxisymmetric breakup is practically un-

The problem of capillary jet flow and breakup has a known. Photographs of the meandering path of fast capillary

long history beginning with the qualitative studies of Bi- jets appeared as early as 1931 in the writings of Weber"5 and

done' and Savart, 2 which were extended by Savart, Plateau, Haenlein' 6 : these photographs were reproduced later in a

and Rayleigh, and summarized later by Rayleigh.' These famous textbook by Prandtl, " who referred to the crests of

studies focused on the low-speed regime where the jet forms nonaxisymmetric shape as "wavy bulges." The subject of

radially symmetric, regularly shaped, drops of measurable nonaxisymmetric breakup resurfaced only recently in the

frequency. Rayleigh studied the symmetric (varicose) break- literature, triggered by the need for improved fire-fighting

up theoretically, by imposing hypothetical infinitesimal dis- equipment. Hoyt, Taylor, and Runge" reported an experi-

trubances on the jet and examining the stability (or instabil- mental study of the breakup of fast water jets and on the

ity) of each disturbance in time. Rayleigh's theory was sum- effect of adding drag-reducing polymer to the water solu-

marized and extended in several directions by tion. The authors refer to the meandering section of the jet as

Chandrasekhar." an "unstable wave region." Greater photographic resolution

Much of the post-Rayleigh work focused almost exclu- of the meandering breakup regime was achieved in a subse-

sively on the axisymmetric (varicose) regime, although there quent descriptive study by Hoyt and Taylor. 9

have been a number of instances in which a nonaxisymme- In summary, much of the existing work on the breakup

tnc breakup mode was observed. Crane, Birch, and McCor- of capillary jets has dealt with the axisymmetric (varicose)

mick5 employed an electronically driven vibrator to study regime. The work on the nonaxisymmetric regime is sketchy

the dispersion curve of low-speed jets (the dispersion curve is and, in all cases, qualitative. The object of this paper is to

the graphical representation of the response of the capillary report a quantitative study of the nonaxisymmetric flow re-
jet to a continuous set of imposed disturbance frequencies). gime of fast capillary jets. For the first time, the photo-

Their results agreed only qualitatively with Rayleigh's. A graphed shape of such jets is subjected to a rigorous wave-

similar experiment was described by Donnelly and Glaber- length analysis which shows conclusively that the

son.6 who studied the response of a capillary jet to external nonaxisymmetric shape is governed by a characteristic,
disturbances generated by a loudspeaker and audio oscilla- meander-type, wavelength which scales with the jet diame- I
tor. Donnelly and Glaberson, like Crane et al., noted parcels ter.
of liquid between the large drops predicted by Rayleigh's

theory. They termed these parcels "ligaments" and account-
ed for their appearance by arguing that the ligaments were Fluid Inlet

due to higher-order harmonics present in the disturbing fre- P,. Ai, Inle-

-: quency. Donnelly and Glaberson found excellent agreement 3 mm

between Rayleigh's linearized theory and their experimental
results, despite the fact that Rayleigh's theory does not pre-
dict the existence of ligaments.

During the past fifteen years we have witnessed a large Staic
Head -

volume of research aimed at explaining and predicting the P0 0i I 0 2 3 4 5c,
formation of ligaments in the process of varicose break-up; Noze Secn

examples of this research effort are the theoretical work of - '- s-
Yuen,' Nayfeh," and Lafrance.' Experimentally, the liga-
ment and satellite drop formation mechanism was investi- ,' 7 I tr-

gated by Goedde and Yuen," Rutland and Jameson" and,
in a comprehensive three-paper study, by Chaudhary and
Redekopp.'2 and Chaudhary and Maxworthy."'-

Relative to the wealth of information on the varicose FtI, I S-,emjtic ofexpenmental apparatus and nozzle design.
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II. EXPERIMENT TABLE 1. Proper exposure settings for photography in total darkness at
"full" flash power.

The breakup modes of a capillary jet issuing into the "full"_Rashpower.

surrounding atmosphere were studied in the laboratory us- Film type f-stop Shutter speed
ins the apparatus shown in Fig. 1. The fluid reservoir con-
sisted of a 1.83 m tall Plexiglas cylinder with an internal Kodak PR 120 4 1/30sec
diameter of 14 cm. The reservoir had a number of fluid Kodak PXP 120 5.6 1/30sec
drainage ports distributed equidistantly over its height. The
nozzle adaptor included a "rounded" internal duct design,

-. and was located 15 cm from the bottom of the cylinder in
order to avoid the flow distortion caused by the bottom. The 11. THE CHARACTERISTIC WAVELENGTH

-., reservoir was safely pressurized to 2 atm (30 psig) while the The domain covered by the present study is shown on

ties~Th employe invre thi study Theen 3td mm nozzle waoenp D/cylinder was full, yielding ajet velocity range of 0-25 m/sec. the Weber number-Reynolds number chart of Fig. 3. The
The range of low jet velocities was produced without pres- following definitions apply,
surization by controlling the height of the reservoir columnvia an appropriate drainage port. Figure I shows also the We = p V 2D/, (I)

S two nozzles employed in this study. The 3 mm nozzle was Re = pVD//ju t2)

made from a plastic compound which was cast in a preci- where p, V, D, a, and .A are, respectively, the jet density,sion-made mold and later machined to final dimensions. The velocity, diameter, surface tension (in contact with air), and

1.1 mm nozzle was machined directly from a Plexiglas rod. viscosity. As illustrated in Fig. 2. (a) and (b) denote the ex-
The jet flow was recorded photographically using the tremities of the photographed portion of the jet. The com-

set up shown schematically in Fig. 2. The photographic plete photographic record is available in a thesis written by
equipment consisted of a Hasselblad 500EL/M view camera Stockman.2" Due to space limitations, in the present paper
fitted with extension tube No. 21 for detailed closeup shots, a we analyze only a representative sample of this record.
Sunpak model 320 photoflash and a 45 cm X 75 cm section of Three photographs of the fast capillary jet flow are
translucent glass for diffusing the light from the flash. As shown in Figs. 4(a), 5(a), and 6(a). Each photograph corre-
shown in Fig. 2, the jet was positioned between light source sponds to one of the three different liquids used in this study.
and camera. The proper combinations of f-stop and shutter It is useful to take a close look at the shape (contour) of the
speed (in total darkness at "full" flash power), determined photographed jets in order to recognize the large-scale
after a number of trials, are reported here in Table 1. meandering path followed by the jet. As the jet fluid viscosity

To provide a reasonable range of fluid properties, this increases from Figs. 4(a) to Fig. 6(a), the sharpness of the
study was based on three different fluids; meandering path is enhanced to the point where, in Fig. 6(a),

I. distilled water, the sinusoidal contour of the jet is illustrated with amazing
II. glycerol in water solution, 30% by volume, clarity.

III. glycerol in water solution, 70% by volume. The central objective of our study was to document in
The physical properties of the three fluids are reported in quantitative terms the meandering shape of fast capillary
Table II. For each of the three fluids and the two nozzles, jets. To meet this objective, the jet contours were subjected to
four different jet velocities ranging from 2 m/sec to 20 m/sec a wavelength analysis. In each case, the jet contour was pro-
were observed. Thus, a total of 24 jets were observed and jected (enlarged) on a screen and traced by hand on paper.
recorded. This operation produced two waveforms, one for the upper

edge of the jet column and another for the lower edge. The
waveforms were then digitized and fed into a computer pro-
gram which calculated their Fourier transforms and deter-
mined the respective power spectra and cross correlation
functions."" Tr on ltant

Ozzie Gla .In order to learn how the characteristic wavelength var-
cnPhoto Fot

CTABLE II. Physical properties of the working fluids.

Surface
Pt.-. Density Viscosity tension

Fluid Ig/cm') IcSi (g/sl/Portiont of Jet

None _ Jet ,. . _.,PhOtOqrO phed I. D istilled water[-; No.zze /,Det__ 718 "C1 1 I 73

1 ,ii. Glycerol-water,
- a - 30% by volume 120 Cl 1.18 17 68

" " III Glycerol-water,
' FIG. 2. Photographic arrangement, and the coordinates of the photo- 

7
0% by volume 120 C 1.24 333.6 64.5

graphed jet segment.
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FIG. 3. Weber number-Reynolds number domain covered by the present experiments.

ies with position along the jet, each photographed contour its peak value at zero lag, which indicates that the upper and
was divided into a number of segments [for example, three lower waves are in phase. In conclusion, the flow regime
segments for the jet column shown in Fig. 4(a)]. Each seg- documented in this study is not axisymmetric (varicose), but
ment was analyzed, and the results are presented in Figs. 4-6 one which is characterized by a large-scale sinuous shape of
as power spectra with A ID on the abscissa and P* on the wavelength A,..
ordinate. P * is defined by Similar conclusions regarding the existence of a charac-

Slrteristic meander wavelength emerge from the analysis ofD lim I I IX(f)12 dt, (3) Figs. 5(a) and 6(a). Due to space limitations, only two sam-
pies are reported here as Figs. 5(b) and 6(b), while the com-

X(f) = x(t)e-i'dt, (4) plete record of the wavelength analysis may be found in Ref.
20.

wherex(t) is the contour waveform,0 w 21rf~f VIA, and T Figure 7 shows a summary of the A,. measurements
" is the sample length. yielded by the present study. The plotted A,, represents the

Figures 4(b)-4(d) demonstrate that, regardless of longi- average over the given x segment, however, in reality the
tudinal position along the jet axis, the upper and lower wave- meander wavelength is continuous in x.
forms have a single (narrow) band of wavelengths which
dominate the power spectrum. In this study we refer to the IV. DISCUSSION OF EXPERIMENTAL RESULTS
predominant wavelength (A corresponding to maximum P C)

.:- as the meander wavelength A... Figures 4(b 4d) show also A theoretical interpretation of the present results is pos.
"' that the upper and lower waveforms have the same meander sible, based on both the theory of hydrodynamic stability

- wavelength and, in all cases, the meander wavelength scales and the buckling theory of fluid columns. Batchelor and
with the jet diameter. Furthermore, the upper and lower Gill' considered the linear stability problem associated with
waveforms are in phase: this conclusion follows from the an inviscid round jet discharging into a quiscent fluid. They
cross correlation function showed that sufficiently far downstream from the nozzle, the

I "" jet is least stable to a temporal nonaxisymmetric ("sin.
r- lim f x(t Mt + r)dt, (5) uous"'' ) distrurbance whose axial wavelength is larger than

TD-T-. T 0 several times the jet diameter. Similar conclusions were
where xt)andy(:) are the two waveforms, and f is the prede- reached by Mattingly and Chang,2 2 who treated the linear

' termined phase shift (lag) between the two waveforms. As stability of spatial disturbances imposed on the samejet con-
shown in Fig. 4(e) the cross correlation function r* reaches figuration. In addition, Mattingly and Chang" studied the
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FIG. 4. Meandering jet of fluid 1. D= 1. 1 mm. V= 17 m/sec. a 0mm. b= 163 mm. (&I photograph. tb) spectral density Of segment 5 1-71 mm down-
stream from nozzle, (c) spectral density of segment 71-91I mm downstream from nozzle, (d) spectral density of segment 9 1-111 mm downstream from
nozzle, le) cross-correlation function of segment 5 1-71 mm downstream from nozzle. The upper and lower waveforms are labeled A and 0. respectively.

natural instability of the jet in the laboratory and reported dicted in Refs. 2 1-23 was recognized by Hoyt and Taylor."4

excellent agreement between experimental measurements Based on photographs similar to the ones obtained in the
and theoretical stability predictions. The same problem and present study, Hoyt and Taylor"' were able to identify a visi-
conclusions were discussed in a most recent study by Lopez ble axial wavelength of what is clearly a nonaxisymmctric jet
and Kurzweg." shape. In Fig. 10 of their study, Hoyt and Taylor24 report

The connection between the nonaxisymmetric shape that the visible axial wavelength increases in the down-
and fast capillary jets and the least stable disturbance pre- stream direction, much in the same manner as A,., of fluids

150 Phiys. Fluids. Vol. 25, No. 9. September 1962 M. G. Stockm~an and A R. 1 sO9
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FIG. 7. The measured meandering or buckling wavelength versus longitu-

0 0 dina position along the jet.

2 4

FIG. S. Meandering jet of fluid II, D = 3mm, V= I1.2 r/s, a = 146 mm, cofluent strem, the jet develops a nonaxisymmetric shape
b = 324 mm. (a) photograph. (b) spectral density of segment 168-183 mm when the relative velocity between jet and stream reaches a
downstream from nozzle; the upper and lower waveforms are labeled A high enough value. Figures 2 and 3(a) published by Freeman
and 0, respectively, and Tavlarides25 show a sinuous contour whose ratio (axial

wavelength)/(diameter) appear to be nearly identical to the
ratio visible in Fig. 6(a) of the present study. Specifically,

I and II considered in the present study (Fig. 7). Inspired by averaging over three complete wavelengths visible in Fig. 2
the existing theoretical work of Batchel: and Gill"' and of Ref. 25, we obtain Am,,/D-1.67. Also, averaging over

Mattingly and Chang, 2" Hoyt and Taylor2 interpreted their four complete wavelengths visible in Fig. 3(a) of Ref. 25 we
two-dimensional photographic record as a helical (three-di- estimate l.,,,/Dl.47. Note that these two values of
mensional) instability with long axial wavelength, as predict- An., ID, 1.67 and 1.47, fall right in the middle of the narrow
ed by stability theory. band of characteristic wavelengths revealed by the power

In a more recent experimental report, Freeman and spectrum of Fig. 6(b) in the present study.

Tavlarides 5 showed that when a liquid jet is suspended in a To summarize, classical hydrodynamic stability argu-
ments predict correctly the instability of the jet column to
nonaxisymmetric disturbances, as well as the scale of the

S.... axial wavelength ofsuch disturbances. However, there is one
____,,,, -.__ - additional result which now has been documented by three

independent experiments (Refs. 24 and 25 and the present
-,. study) which is not predicted by existing hydrodynamic sta-

- .bility analyses. This additional result is the tendency of the
nonaxisymmetric *rave to show a A,,,.,ID value which ap-

- :.:. proaches 1.5 in a region close enough to the nozzle where, as
discussed by Hoyt and Taylor,2' the nonaxisymmetric dis-
turbance has not had time to be amplified due to the form

a W) L L drag interaction between the liquid jet and the ambient air.
Insight into the origins of this additional feature is of-

1 V (fered by the buckling of fluid columns. ' 6-11 It is worth noting
o that as a theoretical viewpoint in fluid mechanics, the buck-

r,o" . ling theory is much newer than hydrodynamic stability the-
ory. The novelty of the concept of fluid column buckling

may indeed be responsible for the early interpretation of
nonaxisymmetric disturbances in fast capillary jets as heli-

¢ E cal. In fact, the experimental record available for this inter-
pretation is exclusively two-dimensional and, as such, the
same record can be interpreted as evidence of local buckling

FIG. 6. Meandenng jet of fluid Ill D = 3 mm, V= 15.2 m/sec, a= 140 in a plane determined randomly by the presence of random
mm. b = 305 mm ia photograph, ,bi spectral density of segment 267-278
mm downstream from nozzle; the upper and lower waveforms are labeled disturbances at the air interface.
A and 0, respectively This altenative interpretation is recommended strong-
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For the same reason, the fact that for fluids I and 1i Am.
increases with x is a reflection of the thickening of the air
stream entrained by the liquid jet. Thus, sufficiently far

D downstream the liquid jet meanders according to the buck-
• led shape of the surrounding (thicker) air stream.

77 . . .. . . . . The connection between the nonaxisymmetric flow of
', Tfast jets and fluid buckling requires further study. Some re-

2 seachers have already expressed the view that fluid buckling

may serve as origin for the turbulent motion of fluids. 3°'O 3

- 1 b) Along the same lines, it is interesting to note Lopez and

Kurzweg's statement that the nonaxisymmetric instability
ofjet flow may actually account for "the breakdown pheno-
menon in boundary layer flow," hence, for the well-docu-
mented bursting process. 4
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Theory of Instantaneous Sinuous Structure in Turbulent Buoy ant Plumes

A. Bejan. B~oulder. Colorado

Abstract. This paper reports a theor'. which explains the flicker- the conclusion that the favored approach in turbulent
ine motion of turbulent plumes as \sell as their large-scale sinuous plume research is one where the "complications" of tile

structure. The theory is based on the fact that the inviscid region. truetfosfedcnb mohdotb h
of the plume (the 'plume column) possesses elastic properties
analogous to those of elastic rods subjected to longitudinal method of' titne-aserai-ine (Towknsend. [41). Conmequeni%
compression. It ts shown that the straight plume column is not most of' thle theoretical work on buoyant jets relies onthe
is proportional to the local plume diameter, in other words, the boundar\ la\ver-t\ pe analysis.

W hapes of all buckled piumeN are erttcl -mir.AbcedI
plume collapses periodically due to the interaction of' its lateral Alhuh ate tillatrcveteti-vrad
elbows with the stagnant ambient. This interaction is responsible turbulent plume concept does gross injustice to the phys-
for the intermittent formation of large-scale buoyant eddies on ics of thle phenomenon. A turbulent exhaust plume does
the periphery of the turbulent plume. not rise straight up into the air, wkith a fixed shape

Theorie der ver~nderlichen gewundenen Struktur in turbulentenreebigtaofninredceorunl.A el
Auftriebsfahnen Plume executes a periodic lateral movement:. the plume Is

not straiehft. rather, it has recotznizable bends separatd by
Zusamnmenfassung. Diese Arbeit versucht. die flatternide Bewe- distances of the samne order as the plume diameter Te
.-ing turbulenter Auftriebsfahnen und ihre g-ro~rdumige gewvun- smk iigfo arbecue or camp fire -snakes int

* . dae Siruktur aufzukldren. Man Lehi davon aus. daB der nicht- tear hslresaemto.wiht oeft '

zahe Bereich der Fahne (die _Fahnensdule-) elastische Eigen-
* schaften besitzt ihnlich jener elastischer Stiibe. die longitudinalen blacked out by time-averaging, can be seen clear],, inl

Verdichtungen unterworfen sind. Die gerade Fahnensdule ist Fie. I.
nicht stabil und verbiegt sich. Der Abstand zwischen zwei Krtim- The object of this paper is to present a theory which
muneen ist dem 6rilichen Fahnendurchmesser proportional. d. h. eplisfrteistim thinatnousrcuead
die Formen aller 2ekriimmten Fahnen sind aeometnseh ainlich. e1
Die Lelkrtimmte Fahne bricht periodiseh zusammeil infolge der tefikrn aueo ubln lms
Wechselwirkune ifhrer zettlichen Krtimmuniten and der ruiheniden
Urmeebung. Dadlurch entstehen intermittierend erof3rdiumie Auf- r
triebs%% irbel am Lmfane turbulenter Auftriebsfahnen. 'n

2 The Concept of Elastic Plume Column

I Introduction Consider a fluid of density o rising vertically through at
heavier fluid of densitv o + Jo. We model the startin2 see-

Turbulent plumes represent an extremely frequent natural tion of this buoyant stream as inviscid. This means that for
phenomenon. in the atmosphere as well as in the hydro- a certain height at the base of the plume we are neglecting
sphere. Furthermore, in heat transfer and environmental the shear interaction between the plume fluid And the
engtnecertng. the turbulent plume constitutes one of the staanant ambient. This is permissible for a height of' the
most effectise mixing. mechanisms known to man. The order of1 4-6 times thle plutne diameter. %% here. as iiok% n
stite of knowlIedgze on turbulent plumes has beetn sum- b% rox% and Chamlpagne [51. the plumne-ambient -hk:tr
nmartid bk Turner [JI and, as part of' a comprehecnsise l,as er is thuin comipared ss ith the plume dwiamctcr. I(~ t.
monouraph on btio~anc -drix en flows, by, Turner [21. neelkected the interactiotn at the plume-amnhtcnt ntec
Antother extensise overview% of the field was published it 11 helpful to im1agline thle Plume fluid is betne .tir-
most recentls, by Fischer. List. Koh. Imberger and Brooks rounlded h% a tin flexible ,lees e (control Nurflaci %hIt'cth
[31 A critical examination of' these review works leadsl to is itiitoflir%\% ith r'espec to the stavinant anibiett.

-7 . - . . . . . - .
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Fig. 1. Large-scale periodic struClUre in tile p1 U1C
above a natural gas wvell on fire - Douglas Pass
Colorado (AP Laserplioto. reprinted from the

______________________Lontamont Daily Times-Call. Oct.'8 t- 19. 1980O)

linagine now a cut perpendicular to the plume axis. If The cross-sectional bending moment M can now be calcu-
the column is straight, in the cross-section generated by lated by writing
the cut wke distinguish only the compressive force (impulse 'l +)d(.5

""Jf =.-- .. (" v- +P:"d

[,: ,,J . -., -,'1

0 1O d A. (2.1) which. using Eqs. (2.4) and (2.2). yields --

where l" and .4 are the plume velocity and cross-sectional .~2 d

li'--' ',;.&4 .',. (16)' '-

area. If the plume column is slightly curved, we distin- R,

-uis, ,as. a _ p crss aboveona ae n naournl gas Thiso ir ouls s

- a c - co b n moNote that the area integral appearing in Eq. (2.6) is the
bending moment is due primarily to the fact that the area moment of inertia (U = D 4 )/64) employed routinely
plume fluid travels relatively faster through regions of the in the study of elastic beam flexure (Den Hartog [1)1). The!

ut .khich are located on the inside bank of the bend. It is group Q 12 plays the role of "modulus of elasticity": this isIeasyn to show a that the cross-sectIonal bending moment M why it becomes increasingly difficult to manualln bend a

Consider for this purpose a bending test in which the increases.
uniform streamn (Q. 1'. .-4) passes through a slightly curved At this point wve conclude that the plume column ik in
duct: the radius of curvature of the duct centerline R,, is axial compression and that the cross-sectional hendin
tnfnitel greater than the Pl tme diameter, D. The Bemoulli moment is proportional to the curvature of the ccnterine
CtlUaIion applied along a streamline requires ,Prandtl (7). (11 'R,. With such properties. the straight plume column

I, o becomes analogous to an elastic column subjected to axial.+ 4
compression (Den Hartog [101). This analog guarantees

%%here the left hand side applies to the straight section that if the plume is tall enough, it will buckle like an
(P I) while the right hand side corresponds to the curved elastic rod compressed between the ends. In the next

.... guis als a ross ec~onalbening omen .If Th sNetn te deveo ithegraulping inoW 0q. (2.6) ist

section.uEquilibrium in the radial direction requires also e in e deeop e buclinr thenrH'ro turbule
" Prandtl 8). pi uMeS _o e\"ed as elastic colum uns.

o U d P
- . easy o(2.3) 3 The Natural Buckling of a Straight Plume bd

Rising from RestN
S crc i is the radial coordinate easured in the plane of' ncrease
. tirfoturc aai (mom tile pssle centerline, toy ard the COtisoitC tile C0111101 cotral defiled h\ M 0 n '
-. cter o cur vatre. (joiitun I q\. 12) anld (2.)., is normal to te punie columin, at : and d: -s il, 2. T'e

S. intalan_ ofererttcal han rhaplcting ol til',r D.Thlee dictatesl

-.. (2.4) -
R R, d:
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where D(:) is the plume diameter at level (note that
D() -t4). Introducing the dimensionless coordinate

yx= l:0 the equation of flexure becomes
-C d.Y ,dY

dz :' - . \

The general solution to this equation is expressible in ,.
terms of Bessel functions (Watson [13])
d Y V , /4 . , .5,4

A Adz.-)= K x "J,,(4/5 x' ) + K. . "J_ 2,,5 (4/5 (.9)

where A, and K.. are arbitrary constants. Noting that

lim - =K 1  
+ K.,. (3.10)

X-0o dxv
Y*

Fig. 2. Static equilibrium of a segment of vertical plume column we set K. = 0. which accounts for the fact that in the \ery
beginning the buoyant fluid rises vertically. The shape of
the plume column, Y(x), is obtained by integrating (3.9).

The conservation of mass through the control volume ,d
requires also Y 5x) K 1 m1/ J2,3(m) din

0
V (:) A (z) = Q, constant, (3.2) where

where Q is the volumetric flowrate through the plume 4/5 . (3.12)
column. Combining these conservation statements we
obtain The integral appearing in (3.11) was calculated with sixth-

digit accuracy, by first expanding J2 ,5s?1n in a power-. ( )1/2

JA()=Q/V(:) (33) series. The principal values of this integral are reported
V. z=' =o 9 here in Table 1. because thex are not available in the

where we made the additional assumption that the plume literature.

fluid originates from rest. V(0) = 0.
As in the buckling theory of a vertical flagpole (Timo- Table I

shenko and Gere [11]; Den Hartog [12]), the rotational
equilibrium of the plume element dz requires ,ni J.,5 (m) dm

C d Y + M - (M + d3) -- 0 (3.4) 0.5 0.172638
or, using Eq. (2.1) and (2.6). 1 0.492870

1.5 0.852135
dY d I dY\ 2 1.168617

n,4 '- dz I 0(3.5) 2.5 1.380308
dz .- . 3 1.452918

Note that in the limit of vanishingly small curvature 3.5 1.384381
dIR, 2 d' dY/dz-. Taking into account the z-dependence 4 1.203166I/ 4.5 0.960384

of V and A. Eq. (3.3), the equation of flexure (3.5) 5 0.717376

becomes 5.5 0.531599
d 3" 6 0.443935_.41r(2g Ao/Q)"2 z Y=O

4 7 (3.6) 6.5 0.470241
d.-  Q dz 7 0.598886

7.5 0.794658
The first important conclusion of this analysis is that the 8 1.007952
plume column develops a "structure" whose characteristic 8.5 1.186949
vertical dimension scales with 9 1.289889

9.5 1.294589
/ -0 1.203059

" l (3.7) 10.5 1.040267
, -- I0 0.847522

The %ertical leneth scale can also be written as 11.5 0.672151
12 0.556041)

D' 12.5 0.525758
constant (3.7 a) 13 0.586530

F -.
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all blocked by the pressure build-up associated with
either the stagnation of some plume fluid into the still
ambient, or with accelerating some of the ambient fluid.
This pressure build-up is consistent with the fact that in a
colunm of' finite curvature the pressure increases in the
radial direction. Eq. (2.3). At the end of the first phase of
the process. the elbow has degenerated into a buoani
edd of mixed fluid: this eddy rotates as shown in the 4.
figure. and rises slower that the unmixed plume fluid
found at the same altitude.

The second phase of the mechanism is triggered b% the
effect of high pressure nodules already present on both
sides of the plume column: the plume buckles in a nes
mode. feeding its stream through the structures gencrated
by the old set of elbows. At the end of the second phase.
the new column gives birth to a new set of large eddies
which continue to rise. In general, the eddies produced b\
the upper elbows interfere with older eddies rising from
lower levels. This interaction is partly responsible for
lateral growth of the turbulent plume, as .v increases.

The most regular feature in the evolution of the
turbulent plume column is the root section. 0 < x < Y,.
which precedes the formation of the first elbow. The root

1 :-of the plume swings back and forth, not necessarily in the
Fig. 3. The buckled shape of the plume column centerline same plane. with a characteristic frequency. 02 it.

The half period it of this flickering motion can be
calculated by integrating the first of equations (3.3): it is

." The magnified shape of the buckled plume column is the time interval needed by plume fluid to rise from 0
shown in Fig. 3 as the function 1(.v)/K. It should be to the first elbow. -, =-v1 -o. Combining this result with
remembered that Eq. (3.11) is the result of a small Eqs. (3.7) and (3.3), we discover that the Strouhal number
amplitude analysis ( dY/d: < I). hence, the amplitude K based on the plume velocity and diameter at the first
is negligible when compared with the vertical length elbow. V, and D,. is a universal constant for all inviscid
scale - The static equilibrium of the straight plume (turbulent) plimes

- column is indifferent [10] however, given the slightest
lateral disturbance, the plume buckles in accordance with S D,,- (4.1)
the vertical periodicity shown in Fig. 3. The buckled ,
shape is a succession of elbows whose spatial frequency Another interesting result of the buckling theory is that
increases with height. The first four elbows are located at the large elbow structure (the distance between elbovxs)
, 2.X8. x =5.101, .=7.101. x4 =8.967. scales only %ith the plume diameter, which means that

the buckled shapes of ill in\ iscid plumes are cocl1Ct IC,1. . .
According to the classical arguments of Hydrodynamic similar. This prediction agrees with the observed structure
Stabilit\ Theory [14]. the sinuous shape will be amplified
due to the d~namic interaction of the elbows with the

.' staenant ambient. It is this interaction which leads to the /
formation of large turbulent eddies visible in most atmo- /,

-d spheric plumes (Fig. I). ( I

4 Formation and Eiolution of Large Eddies :

The mechanism of elbow turbulence formation is shown

,chcmltaticallx in Fig. 4 Speaking only quihtatiely. in the s
first phase of the process the segmnent of plume column
located in the viciity of a natural elbow is pushed to the . .--

side h the hori/ontal resultant of the two axial compres- Fig. 4. \lechanism of tormation of large-scale eddies in a turbu-
i- c forces. The latcrl to~cnent of the elbow is cventu- lent plume rising from rest

. .. . . .
....
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I "u" I represents the 'natural heartbeat" of the plume as an
inviscid stream. If tile plume flow is highly %icous

. (laminar). the plume column has a different characteristic
time: the viscous local time is associated with the traxel of
information by viscous diffusion from the plume-,umbient
interface to the plume centerline (total distanc /21. I'i
\iscOUs communication time is gisen b% the olot n to
Stokes' first problem [I 5].

D,/2 o I71 1, -, . or t,, .,,, (- 5.2)
- -, . (v "IS ot,. I) 16 v

STile plume flow remains laminar if tile ambient can

communicate viscously with the stream faster than the
stream can fluctuate. If the column can fluctuate faster
than the viscous diffusion time. then. of course, the flow
opts for the inviscid (turbulent) regime. At transition, the
viscid and inviscid time scales are of the same order of
maenitude; combining Eqs. (5.1) and (5,1t i conclude
that the laminar-turbulent transition is marked by

.I 30. (i.3)

- 2 ,This theoretical estimate of the transition Reynolds nurn-
Fig. 5. Universal geometry of buckled plume columns ber agrees very well with experimental observations and

with estimates based on hxdrodnamie stabilit. experttnicnt,.
Experimentally. it is well known that the transition in free

of atmospheric plumes. According to Eq. (3.7a). the jet and wake flow occurs in the vicinity of Re - 30 (see.

plume diameters corresponding to the first four elbows for example. Schlichting [16]). The hydrodynamic stability
of buoyant plumes and wall layers has been studied exten-are. sively. as summarized by Gebhart [17]. For e.,ample. the

37 6 .4 lowest Reynolds number where instability has been de-) - X 1 ..-- 4 3.07 1, 2.662. 2.4 5. 2.332. (4 .2)
I. tected in vertical laminar boundary layer flow over a
('"-'"constant-flux wall is of order 67 (Fig. 8-21, (171). The

Figure 5 shows a scale drawing of a round plume and the constant-fluxwall is of or d (. 85 1) Te
relative location of the first four elbows. This universal difference between this estimate and Eq. (5.3) is explained
geometry agrees very well with visual observations of by the fact that in [17] the local Reynolds number (G*) is
turbulent plumes rising above barbecues and camp fires. based on the thickness of the laminar boundary layer. It\

instead, the Reynolds number is expressed based on theIt also agrees with the plume photographed in Fig. 1.ipaeeto mmnu hcnss(oecnitn... " -displacement or momentum thickness (more consistent

%kith the slug flow model employed in the present theor, I

S "Iamin.r Plumes vs. Turbulent Plumes: The Transition the the transition Re is a number of the same order as in
Eq. (5.3).

The instantaneous sinuous structure and the eddy forma-
tion mechanism described so far, apply only to large
Revnolds number (turbulent) plumes which can be mod-
eled as inviscid. The present theory does not apply to
laminar plumes. It is important to note, however, that the d b
universality of the sinuous structure (Fig. 5) povides a tion to turbulence is additional evidence that the sinuous

* theoretical explanation for the phenomenon of transition structure (Fig. 5) and the characteristic time scale Eq. 4.1)
r li tt l pm lare real properties of all turbulent buoyant plumes. It is'- from laminar to turbulent plume nlow.

According to Eq. (4.1). the base of the plume fluctua- Important to recogil also that the -/ A line

tes within a characteristic time interval which is propor- ,t'~nmncu',t descrihed in tis paper is not oher\,ed ,ii\
tional to the diameter and inversely proportional to the in uo.ant plumes as in Fig. I. The amc phenucmenon hrk

' elocitv. This local characteristic time. been observed and described as "orderly structure". "cork-
screw shape". and "whiplash motion" in the starting

D 1/I', (5.1) section of low speed turbulent jets (Crow and ( hampagne
5, S5]: Renolds (1]). Others have recognized this snake-like

"-S•
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shape as the cause of the intermittency phenomenon (Yih References
[19]. Fig. 8b. and pp. 545. 546). In the field of boiling heat
transfer we are familar with the occurrence of tall S- 1. Turner. J. S.: Buoyant plumes and thermals. Ann. Rev. Fluid
shaiped vapor bubbles (buckled vapor Plumes) on intense- ~ Mech. 1(1969) 29-44

Turner, J. S.: Buoyancy Effects in Fluids. Cambridge: Uni-
hv heated horizontal surfaces: this phenomenon is recog- versitv Press 1979
nizcd as the "continuous vapor column regime" (Figs. 2d 3. Fisher. H. B.: List. E. J.: Koh. R. C. Y.: Imberger. J.: Brooks.
and 2j in Moissis and Berenson [20]). N. H.: Mixing in Inland and Coastal Waters. New York:

The reader can easily reproduce the natural buckled Academic Press 1979
4. Townsend. A. A.: The Structure of Turbulent Shear Flo%%.shape by experimenting with the continuous water column Cambridge: University Press 1976

tailing from the kitchen faucet. This water column is a 5. Crow. S. D.: Champagne. F. H.: Orderly structure in jet
..sinking" plume defined not by a flexible plume-ambient turbulence. J. Fluid Mech. 48 (1971) 547-591
interface as in Fig. I. but by the flexible hose provided by 6. Shapiro. A. H.: The Dynamics and Thermodynamics of Corn-
capillary forces. Placing his finger about 1-2 cm under presible Fluid Flov,. New York: Ronald 19537. Prandtl. L.: Essentials of Fluid Dynamics. London: Blackie &
the faucet, the reader can buckle this sinking plume into a Son 1969
shape which resembles very closely the shape shown in 8. Prandtl, L.: Op. Cit. 47
Fig. 5. rotated by 180'. In the kitchen faucet experiment 9. Den Hartog, J. P.: Strength of Materials. New York: Dover
the buckled column does not break up. since the lateral 1961

10. Den Hartog, J. P.: Op. Cit. 184-188growth of its elbows is suppressed by the effect of surface 11. Timoshenko. S.: Gere. J. M.: Theory of Elastic Stability.
tension. The same stabilizing effect is present in the S- New York: Mc Graw-Hill 1961
shaped tall bubbles photographed during intense boiling 12. Den Hartog, J. P.: Advanced Strength of Materials. New
by Moissis and Berenson [20]. York: McGraw-Hill 1952

From the point of view of theoretical research in fluid 13. Watson. G. N.: Theory of Bessel Functions. Cambridge:
University Press 1966mechanics, the Buckling Theory reported in this paper 14. Prandtl, L.: Op. Cit. 51

represents a dramatic departure from accepted methods 15. Schlichting, H.: Boundary Layer Theory. New York: McGraw-
such as Hydrodynamic Stability analyses. For the first Hill 1960
time. the Buckling Theory focuses on the equilibrium of 16. Schlichting, H.: Op. Cit. 17

as a ' t nereutstat 17. Gebhart. B.: Heat Transfer. New York: McGraw-Hill 1971fluid flow as afinite size systen: the new result is that the 18. Reynolds. A. J.: Observations of a liquid into liquid jet. J
inviscid plume possesses a new property - buckling - and Fluid Mech. 14(1962) 552-556
that the buckled shape is behind the observed -large- 19. Yih. C. S.: Fluid Mechanics. New York: McGraw-Hill 1969
scale structure- of turbulent piunes. The Buckling Theory 20. Moissis. R.; Berenson. P. J.: Hydrodynamic transitions in -. .

predicts fnucleate boiling. J. Heat Transfer, C 85 (1963) 221 - 230
predicts for the first time the transition to turbulent 21. Bejan. A.: On the buckling property of inviscid lets and the
plume flow: the transition is an internal property of the origin of turbulence. Letters in Heat and Mass Transfer ',
stream, the competition between two stream properties (1981) 187-194

'flu,.tuation and t,sous). Thus, the Buckling Theory explains
the origin of turbulent fluid motion [21]. Dr. A. Bejan
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Theoretical considerations of transition
to turbulence in natural convection

*. near a vertical wall
A. Bejan and G. R. Cunnington*

Hydrodynamic stability analysis of an inviscid wall jet shows that instability is
possible above a characteristic disturbance wavelength which is proportional to the
jet thickness This scaling is the basis for an argument that transition occurs when

*. the fluctuating time period of the unstable (inviscid) wall jet is of the same order
as the viscous diffusion time normal to the jet. The transition niust occur when the
jet Reynolds number is of the order of 102. Published observations of transition
atong a heated vertical wall are reviewed in order to test the validity of the proposed
scaling argument Specifically, numerous observations on buoyant jets near isother-
mal walls, near constant-heat-flux walls, and in enclosures with vertical isothermal
walls are shown to support the validity of the transition mechanism proposed

Key words: convection, turbulence, fluid flow

Transition phenomena have been studied extensively superimposing on the base flow (u = U, v =0)
during the past half-century. This work has been unspecified disturbances:

* brought in perspective in a number of review papers, U U + U' (1)
for example by Tani' and Reshotko2 for boundary
layer flow and by Gebhart3 for natural convection v = v' (2)

* flow. , . :- flow.the inviscid flow (Euler) equations yield the vorticity

The object of this study is to propose a scaling thnsio (Eu l e o lh t
argument as basis for transition to turbulence in the transport equation:
wall jet flows encountered in natural convection along ar ,r 'r

heated vertical walls. First, linear stability analysis of a+(Ut + u)-x a+v'y
a wall jet indicates that the flow is unstable to disturb-
ance wavelengths greater than a certain multiple of
the jet thickness D. Based on this proportionality, it x
will be argued that transition is ruled by the internal
competition between two time scales, the jet fluctua-
tion period and the time of viscous penetration normal
to the flow direction. A comprehensive review of the 0/2
published experimental observations on transition
supports the validity of this scaling argument. Finally,
it is shown that photographs and numerical simula-
tions of transition in vertical enclosures heated from U=Uo
the side visualise the transition mechanism described. U (y)

/u=O

Hydrodynamic instability of an D
inviscid wall jet

Consider the flow of an inviscid jet U(y) next to a 0
vertical wall, as shown in Fig 1. We want to know A
the waviness of the jet as it becomes unstable, in other
words, the frequency of its fluctuation relative to a t
fixed spot on the wall, which can be obtained by
performing a linearised stability analysis of the flow. -
This analytical approach is outlined by Lamb4 . By

Department of Mechanical Engineering, University of Colorado.
Box 427. Boulder. Coloradc 80309, USA y
Received 9 August 1982 and accepted for publication on
12 April 1983 Fig I Wall jet velocity profile
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with the vorticity defined as: Solving Eq (8), the corresponding expressions for r

iC' imi' dU in the three regions are:
4 :iJ dy ( c,= Ae + B+Be-"

Linearising Eq (3) yields:
11[ II c=Ce k"+De "  (10)

K +' I-- V' 0(5
(it A X ox i Y! dy '' Ill) L = Ee 4 '+ Fek"s

Next assume that the-disturbace velocity components "ht- olid wall condition, c, = 0 at t/= 0, arid the
ar bth periodicinx
ar (6)rdcondition that t, must be finite iinfinitely far from theU = , ctj .... (6) wall. mean that:

= V, e (7) A+B=0 (11
where k is the wavenumber (k= 2,r/A). Substitution
of Eqs (6, 7) into the vorticity transport equation and F = 0 (12)
the mass continuity equation, and the elimination of
w, vields a single equation for the transversal disturb- Two more equations follow the condition that t must
ance amplitude v., vary continuously from region I to II, and from II to

(a+k)g - 'k2 , )---kv*= 0  Ae-D/+Be D/2 =Ce-D 2 +OreD/2  (13)
\ay- dy

Our interest is in the wavelengths A or Ce- L+DsekI)=Ee-kI (14)
wavenumbers k for which a is imaginary, ie for which
the assumed disturbance is likely to be amplified (Eqs Finally, the condition that the pressure must vary
6, 7). As shown in Fig 1, we assume a triangular continuously from one region to the next amounts to
velocity profile, so that in all regions of the flow integrating Eq (8) across one region-to-region inter-
d2 U/d y2 = 0: face (eg from y = D to y = D+)':

Uo

I) ,<y<D/2 (=+ -U)[(v)(,-+ )]
:..::' .....~~(a 11) IV ,:,< o <,,)]

11) U--(-) D/2<y<D (9) d dlii) U=Ov [( ) (d -) O (15)

Notation
u, V, Disturbance amplitudesDA, , FCo ciCritical wavenumber (27rL/A,.)

D, E, F C0a Thermal diffusivity
D Jet thickness P Coefficient of thermal expansion
g Gravitational acceleration y e -kD/ (Eq 18)

(in negative x direction) " Dimensionless stratification parameter
4/5 1 1A

G* 54/ P2~ (Eq 49) (! 5 k. Ra,
H Vertical length scale
k Wavenumber (2r/A) ST Thermal boundary layer thickness
L Horizontal dimension of enclosure Boundary layer where vertical
m crD/uo +1 (Eq 18) velocity obeys a no-slip condition
N, t jr (Eq 29) A Wavelength
Pr Prandtl number 7 Vorticity
Ba Rayleigh number: RaH,-basedon Disturbance growth rate

vertical length scale H; RaL-based v Kinematic viscosity
on cavity width L

Re Reynolds number
S vertical temperature gradient Subscripts and superscripts
I tTime
T Temperature * Uniform heat flux
u Velocity parallel to the wall ' Disturbances

(x-direction) min Minimum
r Velocity normal to the wall v Viscous

(!-direction) B Buckling ..-
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Applying this condition twice, at y =D/2 and at Thus, the fluctuation time of the wall jet as an invisuid
y = D,. ields two more equations: stream is:

!ID k 1)/2 ki)' Il anI l •z
D, +I I +e (16) t U/2., (23)*\ it,, / U/2

I D ] + D ku)D where, according to Eq (21):

4 Ul 4.. -pr A ... =,, 1.833D (24)
D--(oku,,)A-B): (17) In conclusion t . D this proportionality appe

4( 1 as a straight line in Fig 2, showin that an invisciti

wall jet of thickness D can become unstable within
Eqs (11, 13, 14, 16, 17) are all homogeneous and, ai nt l>t"
together, they constitute a system for determining the a time interval t > t her o nl• The issue of whether or not the wall jet wvill '"
five unknown coefficients A, B, C, D,,, E. A non-trivial become unstable is decided by examining the "invis
solution is possible if the determinant of this system ciditv' of the flow. Inviscidity or viscidity is a flow .
is zero: property, not a fluid property. If the wall jet tends to

Mn2+m(2y 2+kD-3- y 4)-y"(1+kD)+2y2 =0 fluctuate (wave), then jet fluid will tend to make
(18) contact with the solid wall and the adjacent semi-

infinite fluid reservoir intermittently, at time intervalswhere Y = em- a" ticand m= iaD/u in+l. Eq (18) is t> t,,,n. The wall jet, as a flow, remains inviscid ifobtained by systematically eliminating the fiveinterval it cannot learn by iscous
coefficients among Eqs (11, 13, 14, 16, 17). Whether diffusion of the presence of a restraining ambient.
or not a2is imaginary depends on the character of m: The characteristic time of viscous penetration (t,)
since Eq (18) is a quadratic in m, am2 +bm+c, from the wall and from the outer edge of the jet to
imaginary roots are possible if the discriminant A = the jet centreline (over a distance D/2) is given by
b-2 -4ac is negative, ie when: the solution to Stokes' first problem:

.. =(2y 2 +kD-3- y')2+4+ 4 ( +kD)-8y 2 <0 (19) D/2

Solving A=0 we find that the wall jet of Fig 1 is 2vvt 1 (25)

unstable (A<0) if

1.337 < kD < 3.427 (20) or: D2

In other words, the inviscid wall jet is likely to acquire tV - (26)
a waviness described by wavelengths in the range 16_

A Locally, no jet will remain inviscid forever. Fig 2
1.833< < 4.701 (21) shows that if the fluctuation time exceeds the viscous

"D

The conclusion that an inviscid wall jet of thickness t min
D is unstable only in a certain range of disturbance
wavelengths, agrees with earlier results concerning STABLE (inviscid) -- UNSTABLE (nviscid)
other inviscid flows. For example, Rayleigh' found
that a free two-dimensional jet of triangular profile is
unstable for wavelengths A > 1.714D. Rayleigh also INSCID-- - VISCID
found5 that a free shear layer of thickness D is unstable
if A > 4.914D. It is significant that for several different ":
base flows, from the wall jet of Fig I to Rayleigh's
free shear layer, the edges of the wavelength domains Trasii:
f o r i n v i s c i d i n s t a b i l i t y a r e m a r k e d b y w a v e l e n g t h s T r n s -tO n - - -

which scale with the flow thickness D. We feel that
this scaling is important and, ultimately, responsible
for the phenomenon of transition to turbulence'. This
scaling is the basis for the transition criterion outlined
next. r: \~~VISCI D .-

Time scale criterion for transition (stable)

Each longitudinal length scale A and the jet velocity -
U define a time scale: I

A
t-- (22)U/2 Fluctuation time

This time scale is the period of the jet fluctuation as
seen by an observer positioned on the vertical wall. Fig 2 Internal competition between two characteris-
Note that U/2 is, in an order of magnitude sense, the tic times, the minimum period for inviscid instability
wave velocity relative to a fixed spot on the wall. (t,)and the viscous communication time" (tJ
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communication time t., the jet will remain laminar wiiere x, y, u, c, T, v, g, 63 and a are the co-ordinates,
because it will continue to be restrained viscously by velocity components, temperature, kinematic
its ambient. viscosity, gravitational acceleration in the negative

The instability predicted by so n'any hydro- x direction, coefficient of thermal expansion and
dynamic stability studies is therefore possible only if thermal diffusivity, respectively.
t, exceeds t,,. In Fig 2, this condition corresponds Let 3T be the thermal boundary layer thickness,
to the intersection of the t ....- D line with the tv - D2  ie the slender fluid region in which the wall heating
line: effect is felt. In this region, the heat conducted
t...... =t,~ (27) horizontally from the wall into the fluid, represented

by the scale aAT/8, from the energy equation (Eq
The phenomenon of transition to non-laminar flow (32)), is converted into enthalpy flow in the vertical
appears to be governed by the time criterion: direction, dAT/H. Thus, the alance between con-

O(N,= 1 (28) duction and convection in the layer of thickness 5,
where: requires the following equivalence between the

t DU corresponding scales:
t,,-= 58 (29) ,AT AT(3

The object of the remaining presentation is to test the H

NB - I criterion against the voluminous experimental or:
record available on transition in natural convection i - aH/8T  (34)
along a vertical heated wall. Note at this point that T

the N B- 1 criterion is equivalent to Re-58>> 1, The momentum equation (31) accounts for the corn-
where the Reynolds number Re is based on the local petition between three forces: inertia, friction and
U, D scales of the buoyant wall jet. Experimentally buoyancy. The scales of these forces are, in order:
(as described later) it is found that the transition cor- u
responds to a Re constant considerably greater than U T (35)
unity (Re- 102). The contribution of the time scale HA
argument that led to Eq (29) is to predict a transition Assuming first that the effect of inertia is negligible,
Re much greater than unity; unlike the present argu- and that Eq (31) is a balance between buoyancy and
ments, classical scaling arguments regarding the rela- friction, we write:
tive size of viscous and inertial terms in the Navier-
Stokes equations or in the Orr-Sommerfeld equation uvz'- go a T (36)
reveal Re - 1 as a critical dimensionless parameter. -

It is also worth noting that, theoretically, the same
transition criterion (N. - 1, or Re - 102) is recommen- x
ded by the buckling (meandering) property of inviscid
streams s. This coincidence arises because the buck-
ling wavelength of a two-dimensional inviscid jets,

AB= 7rf43D=l.81D, is practically the same as the
minimum wavelength for inviscid instability, 9
Arn = 1.83D. It has been shown' that the N,-1 u
criterion anticipates correctly the transition to tur-bulence in free jet and wake flow.

Scale analysis of natural convection along a
1% , vertical heated wall

To be able to apply the time-scale criterion, a theoreti-
cal understanding of the two wall jet scales (U, D) is r
essential. Consider the flow near a vertical wall, driven
by the temperature difference AT between wall and
fluid reservoir. In general, the flow thickness (D) will
differ from the thickness of the fluid layer heated by
the wall' (OT). The boundary layer-approximated 6T 5T

equations governing the conservation of mass,
momentum and energy in the system shown in Fig 3 V
are:.4u tv_

-+-=o (30) D D

Au au A'u-+ v-=-;7 + +gP(T - TJ) (31) Pr>1 Pr<1
ox Ay y Scaling Scaling

(3T 2)T T Fig 3 Relative sizes of thermal and velocity boun-_, u -+v - =a 1--- (32)
AX Ay Ay" dary layers for high and low Pr fluids
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Using Eq (34) we find that, in a 8 T layer dominated The relative magnitude of the 6T and 8, scales is

by a balance between buoyanc% and friction, the shown in the right half of Fig 3. Thus, we draw two
scales are: important conclusion,: that the flow scales (43, 45)

15r- HaI-1 4 which follow from a balance between inertia and
(37) buoyancy in the Sr layer correspond to low Prandtl

u - aRai-/H number fluids; and that the thickness of the wall jet

The Rayleigh number based on vertical length scale in this case is the thickness of the entire layer heated
H. Ra, is defined as by the wall,

g TD.r1(ai Pr)A H (46)
(IH TI-f8) for Pr< 1. In what follows we 0hall rely on the aboe v(i 1'

With the same assumptions that led to the scales above dimensions to translate the time-scale criterion (28.
29) into the terminology in which the phenomenon

Eq rthengliily sll ratioinerof transition has been recorded by previous studies of
or inertia/buoanc, requires natural convection.

u2,'H 1

U6T Pr 1 Transition along a vertical heated wall

In conclusion, the scales are valid in high Prandtl A relatively wide selection of experimental olserva-
number fluids (v/a >> 1): as shown on the left side of tions on the beginning of transition along an iso-
Fig 3, Pr >> 1 fluids develop an additional length scale thermal wall was compiled already by Mahajan and
D, which is the thickness of the wall jet referred to Gebhart'. Table I reproduces this compilation and
in the time criterion for transition (Eqs (28, 29)). The shows the number G above which the buoy ant wall
D scale follows from the momentum equation scales jet was noticed to become nonlaminar. The number
(Eq (35)). Outside the thermal boundary layer the G is defined as:
fluid is isothermal, hence, the buoyancy force is negli-
gible relative to both inertia and friction. The 4___gATW

. equivalence of inertia and friction scales in the layer G-
of thickness D: in other words:

40) G =434 Ra, 4 Pr -  (47)'" H D-2

The time criterion (28, 29) can be rewritten in terms
in conjunction with scales (37) yields: of G, by using scales (37, 41) for Pr> 1 fluids; taking

D - PrS'2 T- HPr" 2 Ra ' 4  (41) U - u we have:

for Pr>> 1. The size of the wall jet relative to the NBDU IRa '4 p __ G(48)
thermal boundary layer is shown schematically in Fig 58 58 H r 16 4Pr, A

' .)i 3. The D scale (Eq (41)), will be used later in the Table 1 shows the N n value corresponding to
application of the transition criterion. each experimental report: in all cases O(.V11h'=I,

It remains to establish the u, 5
T and D scales whch e smeas tet in fo asOn.

prevailing in the case where the momentum equation which is the same as the time criterion for transition.

represents a balance between buoyancy and inertia In conclusion, the experimental data on transition
i ( t along isothermal walls supports the theoretical argu-, in the layer of thickness 6T (note that the Pr >> I scales

(u37) ment that the transition phenomenon is marked by(37) and (41) are based on a frictionbuoyancy the equivalence of time scales t,,,, - t,.b e in tTable 2 is a compilation of transition ol)ser'a-
g,, AT,(42) tions made using a vertical wall with constant heat•-g AT (42)

H
and using Eq (34) yields: Table 1 Experimental observations on beginning of

transition along a vertical isothermal wall
", - H(RaH Pr) -n/4

"-R P"/(43) Pr G N,"." " u- a(Ba pr)' '1H

The inertia -buoyancy balance governs the ST layer, Warner and Arpaci' 2  0.72 466 3.08
except in a layer 8 immediately adjacent to the wall Colak-Antic'3  0.72 572 3.79
where the vertical velocity v obeys the no-slip condi- Cheesewright4 5 0.72 600 3.97
tion. In the 8, layer friction is an important effect, Regnier and Kaplan'5  0.72 622 4.12
hnn e 0.77 460-547 2.99-3.56
hence: 0.77 645-702 4.20-457

U 0.77 541 3.52
v=,-gf AT (44) 0.77 605 3.94

3-0.77 378 2.46
L''' Combining this result with the u scale given by Eq Eckert and Soehngen' e 0.72 400 2,65

(4.3) yields: Hugot t 0.7 724 4.83
07 665 443

,1 5T p( Szewczyk'a 6.7 534 202
3, - IIfla' Pr'5' r'2(5
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7. -,. A

flux q-. The observations have been catalogued in Transition in enclosures heated from the side

terms of Pr an(i the number G defined | | as: In the preceding section we saw that the experimental
/G* 'goq"1I 4  (49 observations on transition accumulated over the past

G~ ~* k2 (4) three decades support the idea that the fluctuation
(waving) time t ...... matches the time of viscous

In order to obtain the relationship between Nit and diffusion across the wall jet. Now, by focusing on
G*, we make the observation that for Pr> I fluids enclosures heated from the side, we have the oppor-
the thermal boundary layer thickness and vertical tunity to actually see the incipient waviness of the
velocity sae sscale 3 as: two wall jets during transition. The visualisation of

(90qH' ) the wall jet wavelength A is made pos'oble by the
5r / a (50) slow motion of the 'core"', ie the motion of the cavity

fluid sandwiched between the two fast-moving wall
a(H jets. It has been discovered experimentally 2

5 that in
u r6 ( a characteristic Rayleigh number range the core fluid

2 engages in a cellular motion of the type shown
Substituting D - 5 T Pr' and U - u into Eq (29) schematically in Fig 5. A large number of experi-yields:,; 0mental and numerical studies have confirmed this

G* phenomenon, especially the fact that the number of
, , 210Pr , (52) core cells increases as the Rayleigh number increases. A

Table 3 shows a representative sample of experimental
The No values corresponding to the experimental and numerical observations.
observations are listed in the last column of Table 2. In view of the theoretical discussion presented
Once again, the measured N,, number is of order one, earlier, it is reasonable to regard the cellular structure
in agreement with the theoretical criterion, of the slow-moving core as the reflection (the finger-

Fig 4 summarizes Tables 1 and 2. The experi- print) of the waviness acquired by the wall jets during
mental observations on transition fall consistently in transition. Thus, the cell-to-cell distance visible in
the OIN,)= I domain in the Prandtl number range
0.7-11.4.

Table 2 Experimental observations on beginning of
transition along a wall with constant heat flux

Pr G g 9

Mahajan and Gebhart" 0.71 388-620 2.05-3.27
0.71 400-650 2.11-3.43

Jaluria and Gebhartl g  6.7 504-802 1.36-2.16
6.7 563-802 1.52-2.16

Godaux and Gebhart2 o 6.7 528-979 1.42-2.63 A T
Viet and Uu 2' 6.2 855 2.36

6.4 955 2.61
6.4 900 2.46 Coe flud
5.05 960 2.81

Lock and Trotter" 11.0 293 0.689 '
11.4 368 0.84 H

Wall jet

o ' in

0

035 r 10Fig 5 Representation of buoyancyt induced flow in
a cavity of large aspect ratio with one wall heated.

Fig 4 Variation of time ratio N, with Pr the other cooled, and the top and bottom insulated
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published photographs- - can be interpreted as
the wavelength A ...... of the wall jet. The distance P Pr 0 035

we measured from each photograph is listed as h Pr 0 7

( , .. ) , in Table 3. , - o P 7

Fig 6 shows the relationship between the . Pr 480measured fl/A,,.... and Ba H1 . The wavelength A,, .... o * Pr I COO

decreases as the Rayleigh number increases. However, T a P,-z 700o
the data supplied by an individual experiment (at 'Ell
constant Pr) show very clearly the existence of a . o
proportionality of the type: .°

. a' 153) ' ,

Theoretically, such a proportionality is to be expected
because A,,,,,, - D and D- HRa-1 ' 4 (Eqs 41 and 46). i . i
Thus the core flow data of Table 3 and Fig 6 reconfirm
the theoretical result that at transition the jetwavelength always scales with the jet thickness. 0 . .. ! ...... ,_,

The theoretical scale of H/A,,,, can be calcu- pa.

lated by writing A,,, = 1.833D, and by using Eqs
(41, 46) to evaluate the scale of D. Thus we obtain: Fig 6 Variation.of H/.\ with Ra,"

A,,n theor+ 1.833 PrL.2  for Pr<< 1. The theoretical order of magnitude of

for Pr>> 1, and: H/A,,,,, is also listed in Table 3. Finally, the ratio
B / 

4 p 1 / 4  
(Am,,exp/(A,,,,)...... was calculated and plotted in Fig

1- )- a (55) 7. It is clear that the measured cell-to-cell distance,
,nh, 1.833 (A....)e,,p, has the same scale as the theoretical A...,

Table 3 Experimental and numerical observations on transition to turbulence in enclosures heated from

the side
Pr Ra, HIL H/Am,,, m .

Experimental Theoretical

Jones"6  0.035 2.5 x 105  10 1.61 5.28
0.035 5.0 x 10s  10 3.49 6.27
0.035 1.0x lO 10 4.36 7.46
0.035 4.0 x 100 20 6.45 10.55
0.035 1.1 x107  20 4.42 10.59

Lee and Korpela2' 0.7 1.8 x 108  5.0 1.87 18.28
0.7 6.0 x 108 7.5 2.81 24.7
0.7 1.4 x 10' 10.0 3.73 30.52
0.7 2.8 x 10" 12.5 4.65 36.30
0.7 4.8 X1o, 15.0 5.37 41.54
0.7 7.6 x 107  17.5 5.67 46.59
0.7 1.1 X 10o 20.0 7.46 51.10 -

Elder' s  7 1.7 x 0 9.1 18.90 744.6

Seki et al" 480 9.5 x 10' 30 8.60 4.37
480 9.5 x 108  6 8.80 4.37
480 1.o X 10 15 8.39 4.43
480 5.ox 109 15 8.40 6.62
480 1.5 x 10'0  15 5.40 8.71

Elder' s  1000 2.5 x 109 19 4.17 386
1000 2.7 x 10 19 4.17 3.07
1000 3.4 x 109 19 7.98 4.17 " -
1000 4.0 x 109  19 11.54 4.34
1000 4.7 x 109 19 857 4.52
1000 7.2 x 109 19 910 5.03

de Vahl Davis and Mallinson" 1000 5.0 x 10 t0 2.32 2.58
1000 9.5 X 10 10 4.36 303
1000 3.3 x 109 10 455 413

Int J Heat & Fluid Flow 137



scale predicted by Eqs (54 and 55). The best agree- Noting the L-based definitions of both a, and y
ment between (A ...), and (A .....),,... occurs at employed by Bergholz a, it is easy to prove that the
extreme Prandtl numbers (Pr =0.035 and Pr->480): a, - y scaling illustrated by Bergholz is actually:
This is a direct consequence of the fact that scales (54
and 55) are valid strictly in the limits Pr-.c and H

Ra (57)Pr-*0, respectively. The in-between experimental A"
results (Pr=0.7) are least accurately represented by
either Eq (54) or Eq (33); nevertheless, the ratio This scaling, predicted by the conventional stability
(A ... ),.xp/(A. , . for Pr = 0.7 is practically indepen- theory3 " is the same as the scaling law (53) produced
dent of Ba,,, stressing the earlier conclusion that A,.... by a much more direct argument above.
always scales with the thickness of the wall jet. The agreement between the present approach

It is worth noting that the (A .... iH) Rah -' and conventional stability theory is illustrated further
scaling law recommended by the time scale criterion by the fact that a, reaches asymptotically a O 1) con-
(28) is consistent not only with the 27 experiments stant as y approaches zero. This is shown by Fig 7 in
reviewed in Table 3 and Figs 6 and 7, but also with Bergholzb), but is also predicted by the A ..... D scal-
theoretical results known already from the hydrody- ing on which the present argument is based. Note that
namic stability analysis of the vertical enclosure flow. as y decreases towards zero, the vertical jet thicknes
Attention is drawn to Bergholz's comprehensive study increases and so does the wavelength (Eq (56);; hut
of the flow stability in a vertical slot0'. As 'base flow' this process cannot continue beyond the point where
for the stability analysis, Bergholz considered a the jet thickness becomes of order L because, retard-
counterflow velocity profile independent of altitude, less of how small y is, the slot of width L must house
as would be the case only in an infinitely tall cavity3" .  two jets in counterflow. According to the A ...... - D
He then accounted for the finiteness of the cavity scaling, both D and A-.,... must be of order L when
aspect ratio HIL by postulating the existence of a y<O(1): this also means 'aO(l) constant asy-0',
constant vertical temperature gradient through the which is precisely the behaviour unveiled by classical
slot, S[K/m]: note that in the vertical boundary layer stability analysis (travelling as well as stationary
regime, the thermal stratification S is of order AT/H, modes, Fig 7 of Ref 30).
where AT is the temperature difference in the Although the compatibility between the results
horizontal direction (Fig 5). By increasing the of conventional stability theory and the scaling results
dimensionless stratification parameter y = based on the argument given earlier is relevant and
( S(L/AT'RaL)-' , Bergholz was able to make the interesting, one should not expect one theory to repro-
base flow more jet-like, that is more like the vertical duce' the results of a different theory. Unlike stability
wall jets of Figs I and 3, which are known to prevail theory, which is a mathematically precise approach.
in vertical enclosures in the boundary layer the present theoretical argument is approximate and
regime2

-
'
Z5

.  based on the comparison of scales. This is why the
In Fig 7 of his study, Bergholz reported the success of the present argument should be measured

critical wavenumber a, = 27rL/A. versus the stability in terms of its ability to predict the trends and orders
parameter y and the Prandtl number. One very inter- of magnitude revealed by the many independent
esting aspect of Fig 7 is that in the boundary layer experiments collected in Tables 1-3.
limit (y >> 1) and in the high Prandtl number limit
Pr--cc, the wavenumber of travelling modes is pro-
portional to y: Concluding remarks

a,-y, (56) y

the proportionality constant being a number of order The published observations on transition to tur-
O(1) (in the same limits, the wavenumbers of the bulence in natural convection were reviewed in ordur
stationary modes are, numerically, not much different to test the validity of the time scale criterion (Fi, 2)
than those of the travelling modes, however, they do for transition O(N) = I or O(Re) = 102 formulated. It
not appear to follow the line represented by Eq (56)). was found that laboratory observations and numerical

simulations support the theoretical viewpoint that:
I. At transition, the wall jet exhibits a unique

- -. wavelength which always scales with the thickness
G ° 666. of the jet.

,E 0 2. Transition is marked by the equivalence of two
, , ,, time scales, both properties of the jet region of the

X 0 • 0flow, the minimum fluctuation period (t,....) and
_ 0o °the time of viscous diffusion normal to the jet (t,).
% The empirical evidence on natural convection along
o * , vertical heated walls suggests that:

IC "0. 10 " 3. Transition along an isothermal wall is correctly
anticipated by the criterion O(NB) = I, where N'1
is given by Eq (48).

Fig 7 Experimental/theoretical inciscid wacelength 4. Transition along a vertical wall with uniform heat
ratio as a function of Ra and Pr t Pr notation as for flux is correctly anticipated by the criterion
Fig 6) O(N,) = 1, where Nl, is given by Eq (52).
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04 MECHANISM FOR TRANSITION TO IT'RBULENCE IN
BUG' ANT PLUME FLOW

1'- Siiit( Kixt i andLt Aitii\\ litJ\
lDeprtttterttit ,ItMchantila I tane; i. 'tipu I C.

I nhsersti% ,I t loridi. ltiutkiJer. (I tt t IS

-t ~~~Abstractirflts paper reports a thleor: at Atnd csc~icitl~ tLil tile fuiidalitnttlli.. l:ttttt.in1 Fer';'inNe

ttr tranisition in teial 5 omtectiont pilnmc los-, :icrt~a. t in a.reued : ait lie iratiliti11 i iten ill'!
t. - ~time of. is~otis penetration nttuintiI iii the lnl e bectite cttpar.tihie ! u k i tile trttmtttti ltne sc-itd sitli

tsliclt the plume can tluctuate is an unstable ink icM, itreaml. it is .lIs, irued that attratisitiiti [lie piume
55~ect mus C,1 %s [it thle loeal p1atti di ametecr [Ftc expertiiial part of the studs toco ned ott

* transition in thle .ixissmmetrtc air plume abuse a Point heat source. Smokes% ialication ol the pIlume shape at
transitioni led to extensise ohscrs atioris that support strongix' the transition mechanism proposed
heoret call\. Tile tranisitional plume is seen to meander in a planemtso-diniensiiiialln - a nd \i ji a ksaselciteth

ss hich scales is ith the plume diameter. If e\xcited externally b% mans such wkaxelen'2ibs. thle pIlume has the
properts to select the natural ssavelength proposed ibeoreiealls. The -qulikalence beiseen the present
transition niChanini and! the transition predicted b\ the buckling ibce'rx is discussed.

NOM1INCI.AT1 RE mental engineering, atmospheric research, because
turbulence is the most effective transport mechanism

D local plume diameter Em]knwtom .
f diturbnce requncy ,; ' The buoyant plume is one frequent type amorie

p grvittioal ccelraton m <]the many occurrences of free-convection tiow.s in
If loudspeaker height [in] eaneigadohrapiain.I hspprx r
k thermal conductiv ity [\V' M' K - eniernadthrpIctos in thspprer

specifically interested in the axisv mmetric buoyant
V ratio between i, and t,~ same as buckling

numbr lk,, 16,21]plume uising from a point heat source in a quiescent
numbr N~[16.21]environment. Existing studies on such plumes and the

Q hea inpu [W]plume transition phenomenon have been summarized
t time [s] by Gebbart [1]. who showved that considerable effort

1mb inimm pume luctatin tie ~has been devoted to this problem over the past few
~ vicouscommnictiontime[s]decades. For example. the laminar 2-dim. and

U plume velocity [mn s axisymmetric plume has been studied by Yih [2. 3]. and
x trnsiton hight[in]Brand and Lahey [4]. Probably the most thorough

Greek symbols treatment of this problem is the numerical analysis by

Yt thermal diffusivit% [rn F alii [5].

J)' thermal expansioti ct'cflic::c~it [1K 1E\xperimental studies on t!,e plane Plunk abox e the-
i. nseengh [n] le source %%cre reported h% Brodosvicz and Klirkus

Sbuckling wave length [im] [hi]. Forsiromn and Sparross [7]. and Schorr and
'-~~minmumplum flctutio wavlenth in] Gebhart [8]. The latter two works are concerned witth

tthe Plume behax. ior in the transition reeime as welasi
r kiematc vscosty [ 9  1the laminar reg-ime. Schorr and Gebbart observed by

Subscripts means of interferometric flow visualization a reg-ular
B buckling property laminar swtivine.' motion at a laree distance above a
0 reference state line heat source. This t'~pe of boundary layer swaytng

tnotiion is amplified and cx entuallv the flow becomes

1. INRODLTIONturbulent. Forsirom and Sparrowv also observed the
existence of swaving motion at a fixed point in space

Tis is a stad v of lie fu nda mentai nic Iiani~ii aMitich nela r t ranlititon. hv icanis of a thlermocou ple placed
Causes, the transitioni to tUrleice1C Ill biiiisaitlt pILuits tuidausk hctseen ithe mid-platte and thle edge of' thle
rising from a pint heat soiirc:c [lie trainsition to thernial biiittndtrx lx~cr
turbuitlence is incol tHe must btii lltn,itliei~ a hikhF is [l, heoticii researchi oni tranisitiotn lin plumec :1ti\

nut et ull aidertuiid lie itipr 11c Undatier- priiccededd alongthe b1Citten 0I Its drods namic stabilit

KIM statidine, this pltettonenoit Isctcxsei co~n, Ir- ltetirN I-mr e.imllple.l t eairdCeir']sliselb
ing,, the iniportaice oI predicti-e titic cinititie tuirbiteit :oearitile itl\ Iscid ,ca ,I te (O)r Sininterlelt t\slie
motion it Ihtils. [ lie trMtiiini pictomttui pir- cq:t~It01 th.it tile instittiedI 2-din pltinc bise limis i

ticularlk ipitahnt ti thie ld oif hemt tlite~its i~rut -en ttile lor ilie issninictric-md title t 10:i m the
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symmetric one. A thorough study of buovanc, effect on T,ic 1. Minimum wa.elen,,h for in,z'ihli in inviscid flow
hydrodynamic stability in the vertical round jet has iafter refs. [ 2 1
been conducted by Mollendorf [1)] who found that
buoyancy stronglv affects the stability of jets. "•,,-

In the discussion of existing information on
transition, the adopted theoretical \,ie% is rooted in the
theory of h',drd.,namic stability. This point of ,iew
consists of recognizing the existence of external , -,- ------
disturbances of many wavelengths shich. when
superimposed on the laminar flow of interest, might
render the flow unstable, thus triggerinu turbulence.
Thesame comment applies to the existing experimental . - -- --------
work on transition: this time the disturbances are
introduced into the flow externally. for example, by
using a loudspeaker. Thus. as we look back at the
important advances made in this field of transition stability analysis of radially symmetric flows, for
research. it is important to keep in mind that this example, round jets 13] and annual shear layers 14].
research is not about flows alone, but about the Theobjectofthisstudyisthetransitiontoturbulence
response of certain flows to certain disturbances. in a buoyant plume. This flow is represented

From the outset, it must be said that the point of view approximately by profile (at in Table I. The theoretical
* which stimulated the present study differs somewhat basis ofthe present research is the idea that the D

from the classical hydrodynamic stability approach. scaling discussed in the preceding paragraphs is an
The difference lies in the fact that in this study intrinsic property of the inviscid flow, and that this
transition" is viewed as an intrinsic property of the flow property is responsible for transition. The mission of

-, alone, i.e. a property which is not related to the nature the experimental work outlined later in this paper is to
or questionable presence of an external disturbance. It verif. the validity ofthis theoretical viewpoint. Below. a
is shown in the next section that this intrinsic property simple scaling argument is offered as a basis for the
stems from hydrodynamic stability results which have transition phenomenon, and as an analytical result to
been known for one hundred years. However, it is be verified by experiment.
apparent that the significance of these results ris-a-,is Each longitudinal length scale 4 ( 4-,,) and the

transition has not been emphasized until now. plume velocity U define a new time scale,

t - -. (11
2. THE MINIMLM WAVELENGTH FOR INVISCID FLOW U 2

INSTABILITY: TIME CRITERION FOR TRANSITION This is the period in which the stream will fluctuate

The type of classical stability results which relative to the still environment. Note that U/2 is the
stimulated the present study is exhibited in Table I. In a plume mean velocity which, from symmetry consider-
1880 paper. Rayleigh [I I] showed that an inviscidjet of ations. represents the order of magnitude ofthe velocity
triangular profile is unstable to disturbances whose with which the;. wave rises. The same flow is unstable to
waselengths exce-ed a certain multiple of the jet an infint., of wavelengths />.,,, [ I], hence, the
thickness D. Rayleigh did not calculate explicitly the same flow can fluctuate with an infinity of periods
minimum wavelength of 'neutral' stability: his
discussion focused primarily on another, longer t t., - (2)
wavelength (zI 21D) For which an assumed disturbance
exhibits the highest amplification rate ([1 1], p. 65). The However, since 'm is proportional to D (Table 1), the
minimum wavelength for instability.,;.,,, which results minimum fluctuation period tn,, is proportional to D

o. from Rayleigh'sjetanalysisislisted in row(a)ofTable 1. also. The proportionality t,,,., - D is shown as a
Similar results have been known from stability straight lineon Fig. l.whereDisplottedontheordinate

studies involving other basic flows. For example, because in natural convection the plume becomes
Rayleigh considered also the free shear flow profile (b) thicker with altitude. For an% inviscid stream of
and Found instability for wavelengths greater than '5D' thickness D. fluctuations with a period shorter than t.,.
[I 1]. p. 63). Thus, for several velocity profiles of the are stable.

base flow. the minimum wavclenath for inviscid The issue of %% hether the streim I t. D) %%ill become
instability always scales with the transs ersal dimension unstable is decided by examinin,, the ins scidit.' of the
ofthe flow. As shown in rowCfoF.Tble 1. ihN sc.iling is flo\b ln i%(it, r rcidit isa c.', propert , nta 'huid
consistent with another classical result. namel\. the properl v. If the stream tends to fluctuate (wave). then
instabilito of a plane of ,elocity discontinuil\ ito any plume fluid \%till tend to collide \t h the stagnant
waselength f 12]. In thi,case. the minimum ".iclenth iimbient ntermittentl%, at time iniersals t > t,,n. The
is /ero. i.e. oft hesaie order as the shear las er thickness plumetream remains in\ icild fdurinc each inter\ al tit
The proporlionaitv ,,,, l) isalsoencountered in the is not o\ercone x , IsCuls e1ticLt. I c. it does not learn

i€H



D stable Cinv~sc~dV.. untai isrc,

-leobect of the folw %:, tp eainie.a astu% ito

tettl alidm it' h _,i cln.a :nchani~m
for transition in Plume flow. It i,, ortli noting from the

r outset that the theCoretical time criterion Is already
compatible %s oh two earlier conclusionsh regarding
transition

v'sc~d (stbie) (I I L pcrintcntallV. it is at unis.ersal conclusion that.1 transition Is associated ss ith it characteristic Re~nolds
-~ constant considerably ureater than unit%.

(21 Theoretically, thle same transition criterion is

TIME recommended by the buckling theory of inviscid jets
[ [161. where 4,is replaced b% the bucklingc wai, elength

Fico. 1. The internal competition between the minimum period of the stream. /', = (-, 21D =l.57D.
for inviscid instability itm) and the viscous communication An important distinction must be made. howeve!r.

time(I,)between the abo% e theoretical criterion [equations (6k-
' (mI3 and the uni ,ersallv accepted fact that the transition

is characterized by DC 'v constant. To begin with.
by viscous diffusion of the presence of a restraining tC oino rtcl enlsnme ftasto
ambient. The characteristic time of viscous penetration iso. ueyeprcloii.O h hoeia ie h
It.) from the plume-ambient interface to the plume lnaie. saldsubne qain fhdo

cenerlne ove a istnceof rde D.2) s gvenby he dynamic stability theory can easily be subjected to scale
classical solution to Stokes' first problem [15] aayi oso htteR' od ubri neda

anlssDso htteR% od ubri neda
2D ~ important dimensionless parameter: comparing the
2(vt14 Reynolds number with unity (one), we can say whether

or not the viscous terms can be neglected in the stability
in other words, analysis. Note. however, that this scaling argun~crnt is

not about 'transition', rather, it is about the simpli-
14)~ fication of stability analysis. Also on the theoretical

l~v side, the Reynolds number appears in the solution to

Thus, at any level (height) in its development,1 no plume tecmlt r-omredeuto:hwvr
will remain inviscid forever. Figure I shows that if the unlike in criterion 18). the stability-derived transition
fluctuation time exceeds the viscous penetration time tReynolds number is not a constant. (it is a function of
the plume will remain laminar because its ambient will the wavelenath of each postulated disturbance.)
successfully continue to restrain it viscously. nve fti icusotetm ritrodn )6HS

The inviscid instability predicted by so many cems to provide for the first time a hidodnai
hydrodynamic stability studies iTable I) is therefore stab.t cln ai o 'h enlsnme

possible only if r,, exceeds r,,i.. In Fig. 1. this condition cnsntcsiealgrtrtanuiyasrniio
corrspodsttheiterectonothern Dineith criterion. The experimental observations summarized

corsod oteitreto fthe t.,, - D2 parabola later in Section 6 show that at transition the order of
LD v is 10% in agreement with the time criterion 16H8.

imin t-(5)

The phenomenon of transition to non-laminar plume ~EPRMN.LtPR~SA. RCDR

flow appears to be governed by the time criterion The experiments focused on a controlled '.ersion of

0(N) =1 16) the cigarette smoke phenomenon with which we are all
familiar As shown in Figt. 2.the apparatusconsisted ofa

where man-size. airtiehit. Plexiielas enclosure w~hich ssas
DL ~needcd to isolate the experiment-. from ambient air

N = . I ctirrents present in the lahorator% r ko aidjacent side-
1)c .'.-Ilk and thle topand bottomn %alksofthle chamber %%ere

Noting that /* ....D is a constant (Table 1 I, thle (iN I con't: Uted oIl% ood rhte remltining M' o Lidjacent side
criterion is equivalent to stating that at tran'ition the walk s crc e o~LC I lc -fxilas in order to permit thle

-stream (local) Reynolds number DUL is I certain higlitinu and %w\ine olt the smoke plume
critical) constant considerably greater than unilN. \n t .smntr.iir pluime %%sa, L'enerated .iho'.ea
Thus. appro'iinating / ...z 1.7141) from rahie I. thle smai! heat s 'tircC ;Ii~tCCL ti thle :enter ,I the ho\.
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FIG. 2. Schematic of the experimental apparatus.

approximately 45 cm from the bottom. The heat source laminar plume above a point heat source scale as [I8]
was constructed in the form of a nichrome resistance D
coil. as shown in Fig. 2. Electric power in the 0-50 W D -1,

4 X' 2(i , ll
range was measured and dissipated in the coil: most of
this energy was released into the buoyant air plume.
(The estimated radiation heat loss was less than 6' at U 2

22 W and less than 20%0 at 55 W.)
Cigarette smoke was generated in an external device At transition we expect - D and t .,, - t, [or DU v

constructed after a designdescribed by Bradshaw [17]. constant. equation 18)]. hence, the theoretical
The smoke was released directly beneath the nichrome functions to be tested are
coil very slowly so that it did not affect the air plume. x - 2

This simple flow visualization technique worked very = ((13)
well, and the plumeshape visualized by the smoke trace Xo kQo1
was photographed.

The experiments were designed to test the validity of " Q .14)
the t,,. - t, scaling during transition. For a certain A. ,
(reference) power dissipated in the coil. Qo, the plume Note that thescaling represented byequations (11) and
shape was photographed 3-6 times. The photographs (12) is valid for Prandtl numbers of 0(1) or greater.
showed statistically the existence of a characteristic
height xO and wavelength ;., for the beginning of
transition (Fig. 2). The power setting Q was changed 4. RESULTS
during the course of experiments and these changes In the first series of observations the plume was
reflected in the measured x and A. The object of the photographed in the absence of any external noise
experiment was to discover the dimensionless functions which might act as a trigger for transition. The measured

(Q) transition heights and wavelengths are shown in Fig. 3:
x.function (9) both xand;decreaseastheenergycontent oftheplume

Q, Q increases. The variation of A vs Q Q, parallels the

;- "theoretical curve. equation 114) but the measured
-,. function 0(1 transition heights are consistently greater than the

Q' /theoretical levels. Comparing this first series of

The experimental findings were then compared with observations with the theoretical expectations [equa-

the theoretical functions recommended by the I, - I, tions (13) and 1141], we conclude that in the absence of

scaling. The theoretical functions x v,, and A ,.n can be external triggers the transition wavelength scales with

obtained by recalling that the diameterand velocity ofa the plume diameter, however, the transition is delayed

7-V.

",-f.
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E3..'.CS 3 flEquations (13)or a% ,

_ , i x x

Fi. 3. The transition height and the wavelength as a function FIG. 4. The transition height and wavelength as a function of
of heat input, in the absence of external noise. 0. xxo. heatinput.Theenclosurewallwastappedbyalinger..x, x0 .

transition height. A. .. , wavelength, transition height. A, ;. , -0, wavelength. Q0 = 55 W, xo = 0.25 m.
;.o = 0.04 mn.

and occurs further downstream from the theoretical factor of the order of !/2 predicted theoretically.
level. Again, transition is characterized by a well-defined

Considerably more conclusive results were obtained "meandering' shape with a unique wavelength and at a
by photographing the plume shapes immediately after unique height.
tapping the enclosure once, with a finger. This sort of An important aspect of the plume shape during
noise served to introduce disturbances of many transition is its two-dimensionality. We investigated
(unspecified) wavelengths and amplitudes into the air this aspect by conducting a separate series of
plume flow. Figure 4 shows the measured variation of experiments in which the plume was photographed
L!;o and x,'xo with Q"Qo: the agreement with theory is simultaneously from two angles, from the front and
very good in a relatively wide range of power settings from the side. The side-view was visible in a tall mirror
Q'Qo. It appears that the stream has the natural ability placed vertically near the plume, at a 450 angle with
to filter [19] out of the disturbance spectrum the respecttothecamera-plumedirection.Themirrorview
natural wavelength of transition. The measurements appears on the LIS of each of the photographs shown
indicate that the natural wavelength scales with the in Figs. 7(aHc).
plume diameter (because . - Q 2). These results By tapping the side of the box once, we had
validate the theoretical basis for adopting t,,, - t, as absolutely no control on the plane in which the plume
transition criterion (Section 2). would choose to meander during transition. Thus, we

The repeatability of the above observations is had to take many photographs in order to come across
demonstrated by the sequence of photographs a few cases where the plane ofdeformation happened to
presented as Figs. 5la)-(c). These three photographs be nearly perpendicular to the camera-plume
belong to the same plume, as the plume strength Q was direction. Two such cases are exhibited in Figt. 7(a) and
held constant (Q = 3 1. L W). The transition wavelength (b): plume deformation during transition is clearly in
and height are recorded instantly by means of the one plane. Figure 7(c) shows one of the many cases in
vertical scale mounted next to the plume, at the same which the plane of deformation did not coincide with
distance from the camera [note that Figs. 5(a-cl were either the camera-plume direction or with the direction
taken at different times, using different focusing perpendicular to the camera-plume line: regardless of
lengths]. The photographs show clearly that, given a the misalignment. Fig. 7(c) shows that the elbows of the
plume. the transition to non-laminar flow is sinusoidal shape are all in the same plane.
characteriied by a characteristic wavelength ; and a The 2-dim.. planar, character of the plume
characteristic height x. deformation during transition [Figs. 7(al-(c)] is an

The relationship between ;.. x and Q at transition important conclusion: it contradicts the hydro-
iFig. 41 is illustrated in Figs. ,,aland bi. FromFi', 6(a) d.namic stability asuniption [13] that the initial
to Fig. bI the source strength Q increases by almost a deformation (disturbance) in free jet flow is helical
factor of 2; correspondingly hoth Aand x decrease by a 13-dim.L

.--.-_*- ---. .. .. . . . .- ... , . . .. . .
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Teseries ol exfierinlent, described in the preceding
s~ri\~ldcovi na- deriNc 0th1t the Irtitioli

phenn iicon i, the rcsult ll 1'tlie scaIle oete
discussed III SCenon1 2. 1 hese proptic us surc studied
fUrt her i n anok)thter crics of experi ments w here, ulik ,e Iii

* Section 4. thle locettion. intenisit and frequency of theI
tIrieer' dis Urhbince N% cre conttrolled. File disturbance

a,; cenlerateCd b% a loudspeaker suspended at at certain
hle]!uht. I/. rext to the plume igi. 2). [hle face of' the
loiidspcaiser us as co cred by a us oodcni panel .% ith a

nnn m 200 in moritn al 'isIt cutiinttsit. Thus. %%e wcere
abeto harmonically Iforicc onir a riarrovs section oi theF

risiniz plume. at a height determined b% the position of
the loudspeaker. The intensity of the harmonic foreine
relatise to a reference intensity) was monitored by,
measuring the power needed to drive thle loudspeaker.

Thle experiments were conducted in a manner similar
to what led to thle ohseruations summarized in Fi. 4.
1-or a fixed hecat source strength 0. thle plume was
disturbed ishakeni at certain frequencies I of the same H

amplitudelthe loudspeaker frequency varied however. Fi.. Slat. 1 .i)3 W. 11 0.045 ni. -, 1 4'. 21.
the maximum tra,.el of its cone was held constant). It
%%as obserued that the transition height N: depended
stronfl% on the frequency of' harmonic excitatio. 1. It ______________

NsaS found that there exists a characteristic frequernc%
Such that the transition takes place at a minimum
he:g-ht .frequencies higher and lower than this V[
chiaracteris.tic value triagered transition at higher i
altitudes. These *resonance' characteristics have bee.n
studied extensively (visually and photographically
[20]1 and are amplyr documented in Figs. X(ai-(fi. In
Figs. 8fa1 -M the loudspeaker wvas held at a level 4.5 cm i
above the heat source. while in Figs. il-lf) the

loudspea ker height was 13 cm. I
The minimum transition height and the correspond-/

Ing wavelength were found to decrease wih the
increasine heat source strength Q. These ol'seru ations
Arc *ummart/ed in 1- iz. 9: they% are te~ir r% identical ito ,

the,, results of Fig. 4 obtained by tapping thle enclosore I
once with a lingzer. Thus, the plumeo resonates, hence .. isL
deformed most effectixely when it is harmonically
forced at its natural f requency. with a wavelength ihat

scales with the plume thickness at the transition heiaht.
The acoustic excitation provided by the loudspeaker

loudspeaker height and the excitation amplitude. In .2
Figs. xla-if wve show the effect of disturbance . h.Q=43WU=004m.?7: 4

I'- -amplitude Increasing the disturbance lias the effect of
precipitating thle transition, i.e. the effect of decreasine
thle transition height. Raising the loudspeaker from hth
i.4 cm ito 13. cni those tIle Plumne origin. has the CITe thle characteristic N%,i'.elcrneth and transition lcet the

* 01 piacine the t rarinon fiit iher dIo%% n rca in same mieasuremecnts ire listed in Table' 2and I It i,
c% ident that it transition the het~lt vs p roport]OTIn;i,1

* - the characteristic uvaucheniath /. in faict.

(.111 SuN iui ~ ~Ii is nsre-t-teii lit or tlie s~ loi Ited in I t

.1 oiiwiiar% 0i, tic hi~cdh!iicese e of ohscr- lit Flie measured prOpo(rttoinlth bLtetucn \ itid
a ItI o1'ii. 1is lui Mhuu the. o:titil 11iiieui slimnion. 01 tran'mitio is inticipattci correctl\ 111le Clii
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I ran-i ntoli fl i ll~ plf)ulic Ii,%%

Flu 'lWd Q 4 68W 'A 1)1 o. 13 t__4 -2

fiHz,

Fir. 8(c. Q 8.44 W, H= 0.045 m. 0 41 V; 2 V:E

E l FI~G. 8ff). Q =8.5 W, it 0.13 m. A 1. 2t1: _I.

0
I ~FiG. Effect of disturbance frequency and amplitude on the

resonance characteristics of the plume. The '.oltage V repre-
FiG. 8(d). Q =1.02 W. H 0.13 m. 0 81: Z 4 V; V2. sents the amplitude of the input signal to the loudspeaker.

argument presented in the beginningo ofthis paper [see to obtain
equations (13) and (14)] D)L

In addition, note that thc coefficient ill Cquation i5 IIt S

is a number greater than units. This finding %alidates
the time criterion of transitions. equation iX). s% hicli According to Table 1. 1 ) can onl\ he ol the o'rdercI

trnltdinto a transition Reynolds numher coin- or greater, hence, the traInsitio'n Re'.nold. tiuttier
siderably greater than unit%.. F or example. hK uising ht lie W must he a constitnt coniderahk --remett thllL n clsotepue[qain n i'I untfin the range Ii) 1(1: Thtus ihec present - - -

th rniinh ih sei iae r r q ainiI x ei e tlO Sr3ll1sp o tkU lM %lal

. -- n-



a-153o) ~SiIIai Kmsi K% ind \OK I\\ lil W,

I ahlc I .af,iIo hc -h and .,~~cit
%1ctr:iiL pi.Ittel m I w, 4

I- I r 'i i1

considered in our tiu,% is prediction re:duces to
(Jr =Oil 10'i. which the commonl% obl rersd ranize of
transition Grashof numbers (note that (Jr =Ru Pr).

7CO\CLL SIONS:ihiis pae ecie unaetl uyo the
trAito Xpeoeooftastototruecinnthea

hainu.in air plumes excited harmonically by a study focused on a controlled version of the 'cigarette
loudpeaer.0 xxO tanstio heght:;. .,,walclenth:smoe' lumeflo. Te dpemonstratedtate

(1) t trnsiton. he Pume ssum s inusoidal
quanitaivey t e tanstio mehansm e visone inve he lum orgin[Figs.

Setos2ad3and in Fie. 1. Slap-(c)]:
Iiswrhnoting that the local Reynolds number (2) the transition walelength scales with the local

transition criterion 01.N = IorDL t- = 00)15tatcd plume diameter (Fies. 3. 4 and 9):;
in equations (6) and (8) and verified above, can be easily (3) the transitional meandering shape is 2-dim.. i.e. in
translated into the Rayleigh or Grashof number one plane [Figs. 7(a)-Ic)]:

% . language used in natural convection. In fluids with (4) if the transition is triggered bv noise'. then it is a
- *..*Pr > Off) the velocity boundary layer thickness scales plume propert to 'filter' out 'of the noise the
* -as x Pr' 2 Ra -I and the vertical velocitv as) (:. x)Ra'2 characteristic transition wavelength w-hich is propor-

where Ra is the Rayleigh number qflx 2Q '(2vk). tional to the plume diameter at the transition height
Therefore D U'v = Off02) means that at transition the (Figs. 3 and 4l:

* - avlich umbris u 0 lO~r).Forteaipluts ;) if the transition is triuaercd M~ sngle-f- cquency
ftorcine:. then i Na propert% of the plumne to 'resonate.

______________________________________ i.e. to deorm mos),t %%hen disturbed with a %%axefength

ss hich scales %%ih the plume diameter at transition
height (F-ig. 91.

These experimental conclusions support strongly
*- the theoretical argument presented in Section 2.

According to this argument. the phenomenon of

Table 3. Transition height and %%a~elength measurements
plotted in Fig. 9

Q WNI V fill I fril 11 mlI f (Hii

1,(05 1. 1715 A) i (14 j'
2.13 IC n-, 0 1(145 '

'5 i u 11,)- ono n ijt 7Q

6. o (I7 f i's ii 5.4 f5

4) 0,41 Cilt' 145 i
14 1)41l 11llt,; 11014 S

1i, 1() rhe mneasured char racterilti. s' a'.e~efiL I h and Ir i-
'~ silion height. )datai fro)m Table d sata from Table I Refet ii,, p..bcr ettinil!



Transition to turbulence in plume flow

transition is: abovea horizontal lintesource and a point heat source. fint.I

(a)i an intrinsic property of thle flow: J. HeatJ Mlass Tranifer 6. 597-606 I 19631
(b) the result of the inte'rnal cmeionamong two 6. K. Brodowici and W. T. Kierkus. Fxperimcltdii

chrateisictie cas o petimton inmu in% estigatiotl oflaminar free convectioni flow in airahi~ a
charcterstictimescals ofthe trea. th minmum horizonal wsire w ith constant hecat flux. Mit. J Mat %Ita'

fluctuation period 1-1 and the 'x scous penetration time Trcuisler 9. 81-94~ 119661.
t' 7 R. I Forstrom and E. M1. Sparrow. Experiments on the

clcharacteri/ed b; a unique meandering wavelength 'luoyant plume above a heated horizontal wire. Im. .1.

which is always proportional to the local stream Heat Mass Transfrr 10. 321 -331 i!967i.
SA. W. Schorr and B. Gebhart. An experimental

thickness. investigation of natural convection wakes abose a line
The transition mechanism proposed in Section 2 heat source.lInt. J. Hear Alass Transkrl13,557-571119701.

evolved from a review of classical hydrodynamic 9. L. Pera and B. Gebhart. On the stabilitN of laminar

*stability results (Table I ( and led to the flow properties plumes: some numerical solutions and experiment. lot J.
IHear Mfass Truansfer 14, 975-984 119711.
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\1ECANIS\IE DE LA TRANSITION VERS LA TURBULENCE
DANSU ECOULEMENT DE PANA.CHE

Rksumi-On eiudie th~oriquement et exp~rimenitalement le mecanisme fondamental responsable de la
transition dans Ia convection naturelled'un panache. Th~oriquement. la transition apparait quand le temps de

-r penetation visqueuse normale au panache devient comparable a Ia periode de temps minimale de fluctuation
du panache comme un ecoulement instable non visqucux. On suppose aussi quai la transition. la longueur
d'onde du panache est en proportion du diam~tre local du panache. La partie expiirimentale de 1* iude est
focalisie sur la transition dans un panache axisymetrique d'air au-dessus d~une source ponctuelle. Une

visualisation par fum~e dc la forme du panache i Ia transition conduit i des observations extensives qui
soutiennent fortement le mecanisme pr6posi dans la thiori.Lesllg de transition serpenie dans un plan

(biimesionclemet) t aec ne onueu d'ndequiesta 1&chlledudiamdtre dupanache. S~il est excite
extericurement par des longueurs d'onde. le panache a [a proprit de selectionner [a longucur d~onde
proposie iheoriquemeni. On discute I'6quivalence entre le mecanisme de transition propose et cetut de la

theofie du flambemreni.

ell.
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-Buckling of a turbulent jet surrounded by a highly flexible duct
Ren Anderson and Adrian Bejan
Department of Mechanical Engineering. University of Colorado. Boulder. Colorado 80309

(Received 24 February 1983; accepted 18 July 1983)

An experimental and theoretical study of the static buckling of a downward flowing stream
surrounded by a highly flexible duct is reported. It is shown analytically that the stream buckles
into a meandering shape that depends strongly on the flow velocity in the duct. The amplitude of
the buckled shape is found to be governed by the magnitude of the transverse force created by
nonzero curvature at the free end of the duct. Experimental measurements confirm the buckled
shape described analytically.

I. INTRODUCTION ling during their experiments with forced oscillations of ver-
In the course of flow visualization experiments with tical ducts filled with flowing fluid, but reported their

turbulent water jets we discovered that vertical jets sur- observations without attempting to explain them. More re-
rounded by thin rubber ducts naturally buckle into a stable cently Lundgren, Sethna, and Bajaj 9 observed large-ampli-
shape that is a strong function of the flow velocity in the tude buckling of a cantilevered duct when they attached an
duct. At small flow rates the buckling of the duct is limited to inclined nozzle to the free end of the duct. They calculated
regions near its free end. As the flow rate is increased the the static solution for the buckled shape which resulted from
buckled portion of the duct also increases, appearing to the attachment of the nozzle, and examined the stability of
"climb" up the duct until its entire length is filled with small- the static solution. They found that, with the nozzle at-
amplitude standing waves. The equilibrium shape of the tached, the orientation of self-excited oscillations was no
duct is roughly sinusoidal with a wavelength that is inversely longer random but occurred either in the plane of the nozzle
proportional to both flow velocity and distance from the or perpendicular to that plane.
fixed end of the duct. Three photographs of a buckled duct
containing flowing water are shown in Fig. 1. The flow ve- (0) (b) ()
locity in these photographs increases from left to right.

Further increases in flow velocity beyond what is
shown in Fig. 1 eventually lead to loss of stability and the

- initiation of self-excited vibrations of the duct and enclosed
-" jet. These vibrations have been the major focus of previous

studies using cantilevered ducts containing flowing fluid.
The phenomenon of static buckling has not received as much
attention as the self-excited vibrations, possibly because of
misunderstandings concerning the conditions under which
buckling develops. For example, Thompson' reports that
cantilevered ducts which are initially straight cannot buckle
under the influence of flowing fluids. He is correct in theory
but not in practice, because real ducts are never perfectly I .
straight. As shown below, any slight initial curvature of the
duct causes a nonzero transverse force at its free end and
leads to buckling, provided that the flow velocity is large
enough. -...

Interest in the flow-induced instabilities of ducts con-
veying fluids has been largely motivated by the practical -- . . '

problems of pipeline and heat exchanger design. Niordsen2  +. .
was one of the first to derive the correct form of the equations F -. "

of motion. In the course of a study of flow through segment- .
ed pipes with flexible joints Benjamin 4 confirmed Niord- ..
sen's derivation by using Hamilton's principle. Gregory and - * ....

Paidoussis3 ' and Paidoussis" extended Benjamin's analysis _ . :"4y'
to the case of continuous elastic tubing. Benjamin's study,
like those of Gregory and Paidoussis, is devoted primarily to FIG. I. Static buckling of a vertical hose with a diameter of 12.7 mm al

stability analyses aimed at determining the onset of self-ex- V = i.9 m/sec. a,= 2.78 bi ;'= 3 15 m/ec, a#t = I ot ci 1'= 4 "3 m,
cited vibrations. Bishop and Fawzy' observed static buck- sec. a# = 0.45
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Our objective in the present study is to focus on the force, and bending moment are represented by p,,, T, S. and
small-amplitude static buckling which is exhibited by a tur- .A1. Finally, in accordance with the notation employed in
bulent jet which is bounded by a highly flexible duct. This is membrane stress analysis,"' we write f, s,_, and s, for wall
the "flow-dominated" regime of the pipe vibration pheno- thickness, meridional stress, and tangential stress, respec-
menon studied by earlier investigators. In the analysis pre- tively.
sented below we will include a gravitational tension term not A force balance in the vertical direction (x) yields
considered by Lundgren et al.' in their study of horizontal
ducts. This gravitational term causes the wavelength of the (mf + m g dx + (pnA - T)cos 0
buckled duct to decrease with increasing distance from the + [ T + dT - A (p,, + d) ] cos(O + dd) = 0. 11)
fixed end of the duct. In addition we will show that, if the For small amplitudes, cos(dO ) =cos(9 + dO) z 1,and Eq. II)
flow through the duct is considered to be inviscid, then the
effective bending stiffness of the duct/jet system is increased
by nonuniform pressure and tension distributions created by (Mi + mig = ( p. (2)
the local curvature of the duct. After deriving the equilibri- dx
um equation describing the system, we will find perturbation Integrating Eq. (2) we obtain
solutions valid for short, flexible ducts in the limits V2 = 0 (f)
and V 2 = 0 (le). We will conclude the paper by comparing (mf + mlg(x - L ) po4 

- T. (3)
the wavelength predictions made by a perturbation solution The constant of integration in Eq. (3) was evaluated by ap-
appropriate for long ducts to experimental measurements plying the free-end condition T = p, = 0 at x = L.

derived from photographs such as those shown in Fig. 1. The fluid velocity in the horizontal (y) direction is

d __ x Vda lyx~t~l ayax =ray(4)
II. MATHEMATICAL FORMULATION dt = dx dt dx '

The basic geometry of the problem considered in this and the acceleration of the fluid in the horizontal direction is
paper is shown in Fig. 2. A flexible tube of radius rand length d 2y
L houses a stream of mean velocity V and density p. The t 2 Lyx(t )] V  (5)
centerline of the flexible duct is described by the curve ,(x). dx
The duct is assumed to undergo small-amplitude, beam-like Applying Newton's second law of motion and ignoring sec-
deflections with no change in the shape of its cross section. ond-order terms, we find
These deflections are assumed to be small enough so that 2 d:y d(I "A dS
secondary flows can be ignored. The fluid mass per unit of " dx2  d \ (-pd x} dx
duct length is mf, while the wall mass per unit length is m. As Substituting for the pressure P and tension T from Eq. d3x,

shown in Fig. 2, the average pressure, tension force, shear reduces Eq. (6) to

r duces-Eq . = (6) tonL x/- dx 7

___ mV.4A ((m + m)geL -x) -L TS (7)
___ =_d dxl dT 11 F It is instructive at this point to examine the physical +

X PO meaning of each of the terms in Eq. (7). As the fluid movesthrough the duct it undergoes centripetal acceleration by

virtue of the fact that it is following a slightly curved path.
The centripetal term on the left-hand side of the equation is
balanced on the right-hand side by gravitationally induced
wall tension and by a transversal shear force. In the limiting
case of zero fluid flow and zero bending stiffness (i.e., zero((i , shear force), Eq. (7) reduces to the equation describing a

L' hanging chain. A surprising implication of Eq. (7) is that the
e.de 8 0* static equilibrium of the duct does not depend on the viscos-

det.
96 .t ity of the fluid flowing through the duct. This result is due to

0m the fact that the tension induced in the duct walls by fric-
tional fluid drag is exactly offset by the pressure force re-

St -quired to force the fluid through the duct.

I The transversal shear force S can be evaluated by re-
s--n quiring rotational equilibrium about the bottom face of the

duct segment shown in Fig. 2.

! ,'-" ' "x '(8)
dxwhere M is the total bending moment acting over the duct

cross section. As shown next, this bending moment is due to
.FIG, 2 Force% And moments acting on a duct element. three independent effects: )a) the asymmetric distribution of
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fluid velocity and pressures; (b) the asymmetric distribution I( + W(7
of tangential stresses in the wall caused by jet flow; and (c) the R = -,) (17)
E1 bending stiffness of the tube, predicted by classical beam
theory. Since in the limit of small-amplitude deflections
these effects are not coupled with one another, each will be Wo = r cos -A, (18)
coqsidered separately. yields

In an inviscid jet with an infinitely large radius ofcurva- p) (19)ture R , the velocity and pressure distributions arel" s , = (rt)[p o+ (rcos462R .)(oV " - o] . ( 9

tuR = V th v ci ad pThe tangential stress distributions,, which is needed for cal-

V(w) = V(1 - w/R), (9) culating the bending moment, follows immediately from

p(wl =Po +pV'w/R . (10) Eqs. (15) and (10),

The "jet" bending moment M, associated with these asym- s, = (r/2t)(p V 2 + p,))(1 + r cos 6 /R). (20)
metric profiles is" The "membrane" contribution to bending moment, M,,, is

d2y therefore
, I P o dx2  (11)

In Eqs. (9) and J 10), coordinate w is measured radially from M = s,tr cos dS, (21)
the jet centerline, away from the centerline of curvature (see 210 d+= Vy
Fig. 2). The symbol Io denotes the area moment of inertia of M,, (.V += Po2IopV d+Po)dx. " (22)
the jet cross section (for a round jet, 1o = n-rr/4). R x

The membrane stresses induced in the wall by the pres- So far, the first two contributions to the bending mo-
sure variation across the duct are shown in the bottom por- ment, Eqs. (11) and (22) are due to the jet flow through the
tion of Fig. 2. The horizontal components of these mem- highly flexible envelope. The third and final contribution to
brane stresses must balance the internal pressure force the bending moment is a well-known result of classical beam
acting on the duct wall theory. The bending moment due to the bending stiffness of

dds( the annular duct is' 2
s. st ds dO. + s, t ds dO, =pds2.  (12)-

d 2ySince Mb =El , (23)
dx2  23

2. dO (13) w here l= rr3t. a
r The total bending moment is obtained by adding .qs.

and (11), 122), and (23)

dS =dO,, (14) M= [EI + Io(3pV 2 + 2po)] d 2y (24)

R, dX2 -

Eq. (12) becomes Combining (24), (8), and (7), we obtain the equilibrium condi-

Sm St tion
R, - (15) dy 2 dy

[EI +1 0(3pV +2po)] - +mV

The relation between R, and R is shown in Fig. 3. The hoop dx d,

stress, s,, can be found by integrating the pressure across a + d (m + mI&- L 0. (251
section of the duct as is shown in Fig. 3, X dx

Ro( 0,[ ( P" )](R + This result indicates that the effective bending stiffness of the

P+ j(R + wdw, duct is increased by nonsymmetric pressure and tension dis-

(16) tributions created by the slight local curvature of the duct.
PefrigThe boundary conditions which much be satisfied at the;"" Performing this integral and recognizing thatt i r n c z tupper (fixed) and lower (free) ends of the duct are

y=O atx=O, (26)

d -dy = 0  at x 0, (27)
-at=dx

i -'R and

.dy - 0, (28)I'." :/" "dx2

(El + 3pV 2 )--- - mV S atx=L. f291
_ "" Equations (26H281 are the standard end conditions applied

to the fixed and free ends of a simple cantilever and require
FIG. 3. Force balance for calculating the hoop stress s., no further comment. Equation 129 is unique to the problem
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For turbulent flow the resistance coefficient is small and ap-

I proximately constant

= 0(). (41)

The nondimensional parameters appearing in (34) are
,oa= 1(m,/+m)(gD)( El +)' (2

_ 4L/ID (43)
(EI /pV'l-o + 3)1 2

s wL ID
S=EI/pV21, + 3

FIG. 4. Origin of the transverse force F. The magnitude of S has been t p a en of ggreatly exaggerated. Each of these parameters depends upon V 2, reflecting the
strong influence of fluid velocity shown in Fig. 1.

of a highly flexible duct conveying fluid, and incorporates The final character of the solution to (32H36 depends

the important physical observation that no real duct is ever large degree upon the sign of the function

perfectly straight. The weight of the fluid flowing through z = I + a.68(1 - 1), (45)
the duct will tend to straighten it except for a short region of which appears in the second term of Eq. (34). Function z
unknown length ds near its free end (Fig. 4). This results in a changes sign when 1c passes through the "turning point"
small transverse force F. due to the reaction force of the lag.
fluid as it leaves the duct:

Mf-2 =MfThe location of this point defines the transition between the
F, = m1 V 2 sin(ds/Ro)-mnV 2 ds(y').L. (30) buckled and unbuckled portion ofthe duct (Fig. l(a)], and is

This reaction force is expressed in (29) in terms of the un- positive and nonzero provided that a# > 1. This can be seen
known constant explicitly by considering the velocity-dependent behavior of

S = ds(),. = L. (31) a short, flexible duct with

It is shown below that the sole function of S is to determine LID O (1), (47)

the amplitude of the buckled duct. EI (eghtm)'
Dividing (25) by E! + 3p V 2 I0 and introducing the non- pV 2  0 V2 2 (48)

dimensional variables 0

yL, (32) (lenth/time)2

= x/L, (33) (m, + m)/m/ = 01M. (50)

reduces the equilibrium equation and boundary conditions Conditions (48) and (49) are intended to simulate experimen-
to the form tal conditions when the physical properties of the duct are

d+ -d '  held constant while the fluid velocity is varied. Under these
(I conditions, a,,6, and ' becomed.c4

!,-:' -,:[+,8,+ ']--_L 0 (34) a= 0t + [ (51)

)3=0 at1=0, (35) fl=O[4/(EI/pV 2 Io+3)]' (52)d = ar=O[I(EpVI 210 +3)). (53)

- = The velocity dependence of these parameters is summarized

in Table I.
and

To demonstrate the general behavior of the solution we-'_' Od2 p (37) will first consider the small velocity limit p V2 l/E = 0 ().

d- 2  By neglecting#8 'and y, integrating once and introducing the
Sd 3 f 2S at k = 1. (38) change of variables

The centerline pressure in the duct, Po, has been ex- TABLE I. Velocity dependence of a, 4?. and y for the case of a short. flexible
" .I pressed as a linear function of .i by relating the pressure duct.

* gradient to the dynamic head via a resistance coefficient w: V

dk,.. 3d9)O) O2 "n) Ole' O(w
00 *-001Ol 0(11 O(I)0l

p, = 2 V/ -). 01Oe 0111 Ol
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-a= -a 2/(- - 1), (54) io
d'

d (55)

we can transform (34) into the homogeneous Airy equation

d 17- 0, (56)

with the general solution
r '  C, Ai( ') + C_ i() (57) -

- However, application of conditions (36) and (37) produces

the trivial result C, = C, = 0 and the conclusion that the
duct will not buckle when the velocity is small. -06

In the large velocity limit (p V 2 ,/EI = 0 1 /E)] we pro- -0.
ceed in a similar manner. Neglecting a and y and introduc- 0
ing the change of variables

.Q 5 FIG. 5. Plot of the Airy functions Aijxl and Bi(x. (Taken from Ref. 14, p.

Eq. (34) becomes and exponential behavior when 1 is positive. The transition
d 2

y +between the two forms of behavior is defined by the location
daT - iY 2K(V), (59) of the turning point expressed in (46).

This K(V) = S + (l). (60) Ill. LONG DUCT EXPERIMENTS
This is equivalent to the horizontal problem considered by In the previous section we have shown that the qualita-
Lundgren et al.9 and leads to the solution tive behavior of the solution to (34H38) agrees with the gen-

=S [cos# - cos 0 (i - 1)], (61) eral observations described in the introduction. To test this

and the conclusion that for large velocities the entire length agreement in quantitative terms we experimented with long
of the duct is buckled. Note that the unknown parameter S ducts in the fully buckled regime (afl < I). After testing sev-
serves only to determine the amplitude of the solution and eral different materials, we chose to do our measurements
does not influence the buckled shape. using surgical drainage tubing made of latex rubber. We

Finally, in the moderate velocity limit (p V 2/ used two different tube sizes: the smaller had an inner diame-
E1 - 0 (1)] we neglect y, integrate once and introduce the ter of 9.5 mm and a wall thickness of 0.3 mm, while the
change of variables corresponding dimensions of the larger size were 12.7 mm

and 0.34 mm. For both sizes, the length of the tube was one
7= -z/a 1 , (62) meter. The flexible tube was clamped to an inlet nozzle con-

YS -df. nected to the building water supply. The Reynolds number
d, (63) based on duct diameter varied from 10 to 5 x I0.

Figure 6 shows a schematic drawing of the experimen-
These steps reduce (34) to the form of a nonhomogeneous tal apparatus. In order to avoid the secondary effects asso-
Airy equation

d-'* - 7y* K (V) (64) inlet nozzlei d,72 fl*= a#

with the solution'

= S (Gi(71) + C, Ai(71) + C2 Bi(7)] oudspeaker

a,6 [Gi*(b) + C, Ai'(b) + C2 Bi(b)] ,

-",' -[Gi'(b )Bi(a) - Gi(a)Bi'(b)6" C, = , 661,' - '-'.[Ai(a)Bi'(b ) - Ai'(b )Bi(a)]

c_ - [Gi(a)Ai'(b) - Gi'(b )Ai(a)]
(Ai(a)Bi'(b ) - Ai'(b )Bi(a)]1. dAi C"Bi. dBiP.

G01) = -BiJ77) + dr Baf)dt - - Bi)t )dt, (68)3 dij"" d77

a =- (I - afl)/a2' (691 rubber tube

b = - Il/a". (70) ad cell

The functions Ai and Bi are shown in Fig. 5. The solu-
* i tion f65) will exhibit buckling behavior when r7 is negative FIG. 6. Schematic of expenmertal apparatus
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ciated with bends (elbows) in the piping, the length of the gD/V 2 = 0(e), (711
inlet section was always greater than 50 times the rubber
tube diameter. The inlet section had the same inner diameter
as the rubber tube, and the inlet nozzle was tapered to a knife L ID = 0 (1/), (73)
edge in order to avoid flow separation at the point where the (mf + m)/m = 0 (1), (74)
water leaves the nozzle and enters the rubber tube. The flow a =0 (E /2), (75)
was measured by taking timed volumetric samples of the
water leaving the flexible tube. At each flow setting, the 13 0(6-1/2) (76)
shape of the buckled tube was recorded photographically y= 0e,. (77)
(see Fig. 1).

As argued in Sec. II of this paper, the bending stiffness Neglecting r, integrating once, and introducing the change
of the flexible duct is a pivotal parameter in predicting the of variables
buckled shape of the duct. The bending stiffness of the tubing d af3
material was measured in two different ways. In the first U = (78)
method, Young's modulus was calculated using a load cell, dz K(V)
by measuring the force required to elongate the tubing by a reduces (32) to the form
given amount. The experimentally measured Young's mo- 2U
dulus was then multiplied by the area moment of inertia a + zu (79)

calculated from the physical dimensions of the tubing. This dz-
value was double checked by measuring the fundamental Functions K and z have been previously defined in (60) and
frequency of a short section of the water-filled tube. The (45). Because we expect a spatially periodic result, we will
corresponding value for El was then calculated by using the seek a solution in terms of an exponential WKB expansion 4

formula for a simple cantilever beam. The frequency mea- /1
surement was accomplished by shaking the tube with an arm u - exp a"s (z). (80)

attached to the cone of a loudspeaker (see Fig. 6). The a,

Young's modulus determined by these methods was found The functions s. are determined by substituting this expan-
to be 1.7 X 106 N/r 2 with the static test giving values 10%- sion into the homogeneous portion of (79)
15% higher than those determined by the dynamic test. S

A typical experimental run was started with the tube So + i ,  (81)
hanging limp (collapsed, with elliptical cross section). When S - ln z. (82)
the water was turned on the duct began to buckle from its When expressions (8l) and J82) are introduced back into Eq.
free end as described in the introduction. The length of the (80) we find the WKB solution for the homogeneous equa-
buckled portion of the duct increased with increasing flow tion to be "
velocity until a#1 reached the value 0.35 for the larger diame-
ter duct (0.43 for the smaller diameter duct) when self-excit- 1 [C ( 2 i/2'±Csin( 2 z3/2')] (83
ed vibrations began near the free end of the duct. The ducts uh Z=14  os +3a )/ 3r (3
were rotated end for end during the experiment to test for
systematic error associated with the specific shape of the The corresponding particular solution is found by solving
duct. The only quantity that was found to vary significantly (79) in the limit a2  0 and is
was the amplitude of the buckled shape, in agreement with -'l.8
results (61) and (65). u; /Z. 84)

The scaling that is appropriate for theducts used during Combining (83) and (84), applying conditions (35)-(38) and
the experiment differs from the short ducts considered in the transforming back to the nondimensional physical coordi-
previous section: nate .i, leads to the final form

--d. - a-D +- Ccos- + C2 sin . Lz 3 /2  (85)
i {a 2 D 2 z" 4  3a ) 3car)J

D:5+ L _ C, Cos(L + C, sin( -L (86) =-

c - (l/C34 )[sin(2/3a)/4 - cos(2/3a)/a] - sin(2C 31 2/3a) (87)
[cos(2/3a)(C1 2 _ i(/a + sin(2/3a)(C312 

- 1)/4]

C, = cos(2C 12/3a) - (I/C 114 )[sin(2/3a)/a + cos(2/3a)/4] (88)

[cos(2/3a)(C /2 
- I)/a + sin(2/3a)(C"2 

- 1)/41

C =1- cr3. (89)

3198 Phys. Fluids, Vol. 26, No. 11. November 1983 R. Anderson and A. eejan 3198

----------------------------------------------------------------



I1 I j T
10 T lo-

i To

L Zo' -

I
5 -5

00
0.5 z/L L0 0 0.5 /L0

FIG. 7. PlotofA.when V=4.05m/sec.a=0.01,j= 5
7

.4. D= 12.7mm, FIG. 9. Plot ofAo when V=4.56 m/sec. a =0.005.-752 All other

LID = 72, El = 4.65x 10' Nm
2

, and mf/(mf -v ml= 0.895. + = ex- parameters have the same value as Fig. 7. 1 - = expenmental value,

, perimental value, 0 = theoretical value.) 0 = theoretical value.j

Equation (85)was integrated numerically fromk = 0 to tude of the buckled duct, but does not affect its general

1 = 1. During the integration the distance between succes- shape. In addition, we found that a vertical duct exhibits a
sive crossings of an imaginary line extending from the origin transition between sinuous and exponential deformation.
to the free end of the duct was recorded for comparison with The location of this transition was found to depend upon the
measurements taken from photographs of buckled ducts. velocity of the fluid stream. We successfully tested our anal-
We define the distance between crossings to be A, and show ysis by measuring the buckling wavelength of a long duct
the results of this comparison in Figs. 7-9. The experimental and comparing it with the predicted values.
measurements are denoted by + 's and the numerical results It is important to note that the buckling property of a
derived from (85) are denoted by O's. The agreement is good, bounded jet, which has been explored in this paper, is in
both in terms of the location of the crossings and the magni- principle independent of the bending stiffness of the duct
tude of A.. The total number of crossings measured from which surrounds the jet, because of the inherent jet bending
photographs agree with those predicted analytically, except stiffness defined by Eq. (11). In the present paper we have
for the case shown in Fig. 9. It is felt that this is a result of our examined the general case where the duct walls have finite
inability to interpret the photographs accurately near the bending stiffness. However, a similar buckling phenomenon
free end of the duct. is observed in jets bounded by ducts with zero bending stiff-

ness, for example, in fast capillary jets"5 and in inviscid jets

IV. CONCLUSIONS that discharge freely into an infinite reservoir. ' In the latter

We have shown analytically that static buckling of a case, the hydrodynamic stability analysis demonstrates that
highly flexible duct filled with flowing fluid is a result of the the jet moves as if it were bounded by the annular shear layer

shear force created by the unavoidable initial curvature of which surrounds it, and selects a longitudinal wavelength

the duct. We found that this shear force governs the ampli- that is a certain multiple of the jet diam eter.'6 This is consis-
tent with the buckling wavelength produced by the EI--d)
limit of the present analysis. " A compilation of photographs

of buckling natural flows is presented in Ref. 17.

From the point of view of experimental methods in tur-
S-.: bulence research, the present flexible-duct experiments illus-

trate an effective way to visualize the natural tendency of any
0- ° turbulent duct flow to engage in large-scale, organized, mo-

S". -t ~tion. As the beam stiffness of the hose decreases, the hose
wall molds itself to the large-scale sinuous path preferred by

.. the turbulent jet, and the hose shape becomes a record of the
,5 - large-scale structure of turbulent jet flow. As pointed out in

the Introduction, the search for an effective jet flow visual-
ization method is what led to the definition of the problem
addressed in this paper.
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The Buckling of a Vertical Liquid
Column

Adrian Bejan
This paper dotuments the us il/ow ofa t ertical water -o/ttn i i tI

Cepartment cf Mechanical Engineering on a horizontal surface. It is shown e.\perimenally that :hi lold , , huo w.s
University of Cclorado. the column into a plane sinuous (static) shape whore watelen.'th N, dice 1% Ith le
Boulder. Colo. 80309 local column diameter. The measured ratio (buckl/ne waveleneth) (column

diameter) is of order 7r/2, in agreement with the buckling theorY o) ntticicd./low.

I Introduction

The object of this paper is to report a series of experimental condition of droplet formation at the losser end of a free-
observations concerning the buckling of a vertical water failing column. The subject of axisymmetric break-up and
column, which is a phenomenon commonly observed by droplet formation has been studied extensisely oser the past
placing a flat obstacle under a faucet. The observations reveal 100 years; the core of this work was revie%%ed recently in the
the existence of an interesting scaling law, namely, the context of Hydrodynamic Stability Theory (Drazin and Reid
proportionality between the diameter of the water column and [111).
its longitudinal buckling wavelength. To our knowledge, Lienhard (12] is the only author to hae

The flow of vertical liquid columns is a topic which draws analyzed the sinuous shape of a column impinging on an
its importance from its man), engineering applications, for obstacle. Lienhard viewed the phenomenon as capillary wases
example, gas-to-liquid chemical processing and condensation which originate at the solid plane and travel upward at the
heat transfer in heat exchanger design. As shown below, this same speed as the water velocity. It is interesting to note that
topic has been studied extensively, however, with only one the buckled shape of vertical water columns is sometimes
exception, all previous studies have been focused on the free- accidentally photographed and published by researchers
fall of the liquid column: in the free-fall regime the column investigating an unrelated phenomenon (see. for example,
remains axisymmetric. In the present study we consider a Figs. l(b) and l(c) in Winston and Martin [131).
vertical column which is interrupted by an obstacle and, as a
result, assumes a sinuous (nonaxisymmetric) shape. 2 Experiment

The two-dimensional inviscid flow issuing from a very large We carried out a series of controlled experiments in which
vessel through an aperture in a solid wall is one of the classical we photographed the buckled shape of the liquid column. The
problems in hydrodynamics, pioneered by Kirchhoff [11 and-', Raleih (see Lamb (21) %lilne-Thomson [31 considered the purpose of this photographic record is to document the
Rayleigh peen Lambn e-ooderheft gayied thder relationship betv een the geometry of the buckled column and
Name phenomenon tinder the effect of gravity. Since, under physical parameters of the flos. (velocity, column diameter.
grasity, the "infinite height of the vessel leads to an "infinite column height).
hydrostatic pressure" paradox, Conway [4] redid the problem The experimental setup is shown schematically in Fig. 1.
by inserting a horizontal lid above the wall with the orifice. The apparatus consists of three basic components, the water
He was able to obtain the smooth draw-down shape ot the supply reservoir, the nozzle, and the round table which in-
column, employing the free surface treatment proposed by terferes with the free-fall of the water column. The water
Milne-Thomson [3). reservoir is a cylindrical vessel (14 cm diameter, 60 cm height)

Among the numerous theoretical studies reported in the which supplies water at a known flowrate to the nozzle sec-
literature, the work of Scriven and Pigford [51 appears to be tion. The flowrate is known with 5 percent accuracy from
the first in which the liquid flow was analyzed based on a preliminary calibration experiments which resealed the
S' boundary layer-type approximation. Lienhard [6] chose a relationship between flowrate and reservoir water level. The
similar approach and included also the effects of gravity and reservoir and the nozzle are connected through a I m long
surface tension. Matovich and Pearson (7] formulated a one- vinyl tube with an inside diameter of 0.64 cm. The nozzle
dimensional flow model and w'.ere able to obtain several holder was designed to accommodate four different nozzles
closed-form solutions for symmetric column shapes in various which produce water column% of sarymng diameters. \ssio%%n
parametric domains. A more rigorous formulation tas n Fig. I. in each noz/ie the lhs is I r't
presented by Duda and Vrentas [h]. .\ one-dimensional in the detail drawin of 1
C at-pethr a d p Greenlead throuh a wire-mesh section in ordet to damp out"- Lossrat-tpe theory was de cloped bv Green 191 Lind Bogy•,T. . . .
Cossert-P .-. potential disturbances originating from upstream. Water
[1101 The work of' Bog is concerned primarily ith the columns of different heights and diametcrs %%ere establvhed

o-t h th flids ,Inincently DI-t 1'i Of tibih, a oniI Ihe betsseen the nozzle and the round table. No c that the table
-. , t ,A I - tns a L-,, - ,., I.i ri rc.' d 5,, ti I u,. surface hasaslight spherical curvature in order to presnt lc

i ,e, in ... , .ion. . tocr h. ,042. irrcular accumulation of \,ater right under the colum n.
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The parametric domain covered by the experiments is ~-
described in terms of tso dimensionless groups,

' -re the Weber number (1)
T

Fig.2(a) 0=0.34,W=1.4,zI,0=8.8

B= the Bond number (2)
T

where p. , 911,. r,,, and T represent liquid density,
g ravitational acceleration. liquid velocity at the nozzle exit,
nozzle radius. and ssater-air surface tension, respectively. WeI
varied the Weber number by changing the flow rate: although
the WVeber number attained in the experiment depends on
nozzle size, it falls consistently in the range of 0.1-4. The
Bond number was varied from 0.085 to 1 .37 by changing the
nozzle size (the four nozzle diameters were 0.159 cm, 0.138
cm, 0.476 cm and 0.635 cm). The Reynolds number based on
conditions at the nozzle exit, 2r V,, , varied from 450 to
1100. The velocity profile in the water jet immediately below
the nozzle was measured recently by Yamaguchi and
Takahashi [171: their Laser-Doppler measurements showed " . ,
that the velocity profile becomes flat within a longitudinal
distance of order r0 downstream from the nozzle exit.
Therefore, in discussing the present experiments it is assumed
that the velocity is approximately uniform in each jet cross-

• ., section .
Each experimental run was conducted as follows: first, we

fixed the tvo parameters (IfHB) by selecting a certain nozzle Ftg.2b) B=O.34, W=3.65zlro=7.68
and by keeping the flowrate constant (note that the water
reservoir level could be maintained by replenishing the water Fig. 2 Photographs showing the sinuous shape of buckled liquid
supply during the run). The table directly under the nozzle was columns
then lowered until a new (additional) elbow was observed in
the buckled shape of the column. The height of the table and
the counted number of elbows were recorded and a dimensionless height of the column z= z/fr. We learn that in

- - photograph of the column shape was taken. The procedure all cases the number of elbows increases almost linearly with
was repeated for various Weber and Bond numbers. the height of the column. This conclusion is of fundamental

Representative photographs of the buckled liquid column importance, because it points towards the existence of a
are shown in Fig. 2. The experimental observations are universal proportionality between column diameter and

- summarized in Fig. 4, as the total number of' elbows vs. the buckling wavelength.

Nomenclature

B Bond number gien by T = .aicr-air urfacc tension buckling %a\cl~cen i "i
(pgr,,") T u,, liquid %elocit% al the nozzle , = dc itv

D = water column diameter el kinematic 'icosir,
_7g= grasi tat ional acceleration If Weber number gisen b\

= nozzle radius (OU,(r.) 7 " IptrcripI
Re = Reynolds number, 2r,,u,, , v z height ol Ihe ,,ater coltiinn JIMmt.IsNonal quni it n
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Fig. 3(a) 8=0.34. IN 0.59,zro 9.4 Fig. 3(c) B 0.77, IN 1.77,Z O 6.5

Fig. 3 The plane buckled shape of the liquid column. Left side: the
direct view, right side: the side view through the mirror71; .view appears on the left side, while the mirror (side) s.ie.,

appears on the right side of the photographs. To focus on the:J "" """ "... :' ' e : ' ''' column and its mirror image at the same time, the mirror had
to be positioned no farther than 1 cm away from the liquid

. ,. . column. As the obstacle we used an asymmetric obiect.
namely, the flat end of a screwdriver. The flat end was
positioned so that is made approximately a 10-degree angle
with the horizontal plane (see Figs. 3a-3c).

- .: . .. .Ficures 3a-3c show sery clearls that the !iquid column
prefers to buckle in a plane. The view from the direction

." "- i I, ,normal to this preferred plane reeals a nearly straight
• ' " L " - : r-, .... column.]

-. .. In conclusion, the symmetric (varicose) or asymetric
(sinuous) deformation of the liquid column depends on the
degree of asymmetry of the obstacle. If the obstacle is from
the side, as in Fit,. 3a-Sc, then the column buckles into a
plane sinuous shape. If, on the other hand, the obstacle is

Fig.3(b) 8=0.77,W=1.77,z/r =7.5 symmetric (.e., the same when seen from all directionsi then
the deformation tends to be symmetric also.

3 The Two-Dimensionali of the Buckled Shape 4 Discussion of Results

An important question arises in connection with the The total number of elbosss measured experimcntia2, is
buckled shape of the liquid column: is this shape two- shown in Figs. 4a-4d. Each figure shows the total number of
dimensional, i.e.. in one plane, as the buckled shape of an elbows as a function of column height Z (dimensionless), for
elastic rod, or is it helical? In the course of photographing the ,arious ,alues of B and H. In each experiment the Bond
columns displayed as Figs. 2(a. b), the liquid column number is fixed. it was observed that belo%% a critical Weber
exhibited the tendency to buckle in a way which made it number the ,ertical column breaks up into droplets right
visible only from a special direction. Indeed, the camera under the nozzle, and that the buckled shape is most visible in
which recorded Figs. 2(a, b) had to be positioned so that the the range where W is slightly higher than this critical '.alue.
buckled shape appeared most visibly on film. However, in The experimental observations summarized in Figs. 4a-4d
addition to plane buckling, tall columns showed a tendency to have been performed in this optimum range of Weber
deselop an axisymmetric (varicose) deformation at the lower numbers.
end, near the round table servine as obstacle. It is important The measurements indicate that the number of elbots of
to establish % hether this axisvmmetric df'ormation is an tihe buckled column increa,cs almost linearl, with the height
inte!ral part tot the plane ickling phceonienot or ,imply.a of the column, thus suggesting a local proportio:lhi, bet-
reflection of the -eonetiic tlymmtclr. impo,ed 1,% thc ot,,.ache secn buckling %saselenglih X and column diilelcr D. The.
ont the liquid c olunin. \ eber number appears to hase only a weak infLence on the

In order to ans,er these questions, we conducted an ad- nicaurements of Figures 4a-4d. The Bond nunber ettect ix
ditional serie, of espermtital obsers ation, ieportcd here .ia more noticeable, as tite number of elbo\s s or .oiisiani
F-iLc. 3a-3c. lie luckled ,-lliimn %.,as photographed increases as the Bond number i ncreasc,: Thi, depende nce is
si rltuaiieoilv, i rom the front and fro tih lidc. b, u,ne a :lhstrated in Fig. 5.
\ertial mirror Ahoc pline maide a 45 deg angle s.,th tile I lie proportionalit\ hCei\%een X and 1) is llustr,itcia t d iucr
j.ilnera-,:olumn direction. In I ,. 3la-3( the direct tlrout) i I -ic,. 6 and n . In general, both I) ilid A deci'Cac .I- the
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Finally, the agreement between the buckling theory of
reference [161 and the V/D data of Fig. 7 is thought- 5
provoking, because the theory neglects the effect of surface 17~,aiun

tension, while the W=0(1) data correspond to cases where the rheo(, (.41

surface tension effect is not negligible. At this stage, the ~- '"'F-

agreement between theory and experiment suggests only that LT
surfaces tension is not a major consideration in "buckling"--
(i.e., in the rotational equilibrium condition of a nearly I ~
straight column (161). Whether or not this suggestion is -
correct can be decided by including surface tension in the
buckling theory (this remains to be done) and by extending the \/D U~d 5 Cc,iary Theafy ('ZI

preentexprimntsto document the Weber number domain . ao.dInoo

below W=s00). Note that recent experiments with fast F
capillary jets in the high W'eber number range 10 - 104 [18]1. 4 8.0.085 1
support the buckling theory of inviscid jets (16, 191. :. ::j 3  1rsn 1!0~
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Experiments on the Buckling of
Thin Fluid Layers Undergoing

K. R. Blake End-Compression
A. Bejan This paper reports a series of experiments concerning the buckling of a slender fluid

layer in a state of longitudinal compression. The experiments consist of floating a
Department of Mechanical Engineering. layer of highly viscous oil on a pool of water and, manually, compressing the layer

University of Colorado, from the side. Photographs of the buckled laver show conclusivel that the buckling
Boulder, Colo. 80309 wavelength is largely insensitive to either the rate of compression or the viscosity of

the fluid layer. The observations suggest that the buckling watelength is actually a
characteristic length scale (a property) of the fluid layer, in contrast with the
buckling theory of purely viscous layers (Buckmaster, Nachman, and Ting, [7 ])
where the buckling wavelength remains to be determined randomly by initial
disturbances.

1 Introduction

The concept of "fluid buckling" is relatively new in fluid especially relevant to the work presented here. In one. Taylor
mechanics research: during the past decade it has been used compresses a thread of an extremely viscous fluid floating on
with increasing frequency to account theoretically for a mercury and compares the resultant shape with the shapes of
number of flow phenomena, the explanation of which ap- elastica under compression as calculated by Love [61. The
pears to shed new light on the theoretical origins of turbulence other experiment was designed to determine when a sheet of a
(Cruickshank [1], Bejan [2], Munson 13]). In the present viscous fluid under compression would become unstable.
paper, the buckling concept is used to describe a series of With Taylor's experimental results in mind, Buckmaster,
experimental observations of how a sheet of viscous fluid Nachman, and Ting [7] considered theoretically the buckling
wrinkles as it is compressed from one end. As shown in Fig. 1. of a thin viscous layer (the viscida problem). The problem was
the fluid buckles and assumes a sinusoidal shape with that of a two-dimensional viscida immersed in vacaum, hose
characteristic wavelength X. The objective of this experiment ends are moved together slowly so that inertia terms could be
is to measure the buckling wavelength and to learn how this neglected. Since their analysis was not limited to small
wavelength is influenced by the geometry (slenderness) of the deformations, it was a generalization of Biot's work. They
fluid layer, the fluid properties and the rate of compression. derived a global equation for the evolution of the slope of the

The buckling of highly viscous fluids was first studied by centerline as a function of time and distance from one end, by
Biot [41. In a series of papers, Biot developed the equations to integrating the momentum equations over the thickness of the
describe the buckling of a multilayered viscous fluid. The viscous layer. This equation was then solved using asymptotic
equations were solved and were shown to be unstable when expansions for the case of small centerline deviation. Based
the viscous layers were subjected to an arbitrary finite strain on these results the solutions for large centerline deviations
with a small perturbation superimposed on the initial state. were found numerically. The case where surface tension
Solutions were determined numerically and were found to effects cannot be neglected was incorporated into this theory
agree with solutions given by the theory of elasticity and by Buckmaster and Nachman [8] in a subsequent paper.
viscoelasticity when the instability was of a significant In a more recent paper, Suleiman and Munson [9) in-
magnitude. Biot's work was motivated by applications to the vestigated the buckling of a thin viscous fluid layer subjected
problems of tectonic folding of stratified geological struc- to linear shear. They found that if the dimensionless shear
tures. stress exceeded a critical value. the laver would buckle in a

The instability of jets. threads, and sheets 'f viscous fluids manner similar to the buckling of a thin elastic plate. In
%,as studied qualitatively by Taylor [5]. In his paper, Taylor another study, Munson (101 examined experimentally !he
argues that the instability created by the compression of buckling of a falling viscous jet llosing out ot a vertical ,lit
viscous fluids is the same as the Euler buckling of solid orifice onto a horizontal plate. In this experiment Munson
columns. Of the many experiments he conducts, two are observed that the jet sometimts buckles in a manner similar to

the buckling of a cantilever beam. Another experimental
(,nriiuic i' h FlidsEngn~rirg tsimn r ubliio ~ ~.study w&as conducted by Cruickshank and Mlunson [IlIl on the

101 lt.,t OF I LiDs E,.,InRi , \anuscrip receied hN !he I luiJ, spontaneous oscillations of a falling i',cous .i tiso% ing from
Engneering Disision. Februars S. 1100 a horizontal orifice onto a flat plate. rlhe\ determined the
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Fig. I The bucklng of a thin viscous layer Itoating on top of a heavier
inviscid fluid

minimum distance from the jet orifice to the flat plate for
which the jet would buckle (termed the "buckling height") as
a function of fluid and flow variables. They found that if the
flow exceeded a critical Reynolds number, the jet does not Fig.2 ConstrUctlon details of the experimental apparatus
buckle. Below this critical Reynolds number, surface tension
becomes the dominant factor in influencing the buckling
height. The origin of buckling was attributed to the jet flow inside dimensions measuring 20.3 cm in length, 7.6 cm in
transition from tension in the falling stage, to compression in width and 10.2 cm in depth. The sides of the box serve as a
the deceleration stage when the jet strikes the plate. track for a sliding mechanism carrying a partition (gate)

Commenting on Suleiman and Munson's paper, Bejan [2] which can be lowered into the box (see Fig. 2). It is by means
noted that the buckling phenomenon is not only a property of of this partition that the layer is compressed. The sliding
highly viscous fluids, but also a property of inviscid columns mechanism was designed to operate without vibrations and to
(streams), and, as such, explains the "meander" hold the partition perpendicular to the viscous fluid layer and
phenomenon. The process of inviscid stream buckling was to the walls on each side. It also holds the partition in contact
treated analytically by Bejan [121 who showed that all inviscid with the side walls preventing the fluid layer from escaping
fluid layers buckle so that the wavelength is proportional to behind the partition as the viscous layer is compressed.
the layer thickness only. The proportionality between The sliding mechanism was moved by hand; in order to
buckling wavelength and jet diameter was verified recently in bring uniformity to the results, two stops were positioned to
two separate experiments, one involving the meandering of air set the initial length L and to control the maximum excursion
streams driven by falling paper ribbons (Bejan [13]) and the of the partition. As the sliding mechanism moved between the
other focusing on the buckled shapes of fast capillary jets stops, it passed over a microswitch sending an electrical pulse
(Stockman and Bejan [141). to a timer and, at the same time, triggering the camera. The

At this stage in our understanding of fluid buckling, an duration of the pulse was used to make a time of flight
important discrepancy exists between the observed buckling measurement, and with the assumption that the partition
behavior of viscous layers and the behavior predicted by the undergoes a constant acceleration, it was possible to deter-
viscida theory [71. The theoretical wavelength of the buckled mine the rate of compression at any instant. The accuracy of

shape is indeterminate and, presumably, dictated randomly the velocity measurement is determined by the constant ac-
by the original deformation (disturbance) of the straight celeration assumption. Since the compression stroke is very
layer. Experimental observations, on the other hand, seem to short (13 to 32 milliseconds) and the force applied by hand
suggest that the buckling wavelength is not random [1, 5, Ill. during that interval is approximately constant, the ac-
Thus, the objective of the experimental work described in this celeration is also approximately constant.
paper is to establish whether the buckling wavelength of Experiments were run to determine the effects of the ex-
viscous layers in indeterminate, as in the viscida theory, or, in cursion length and rate of compression on the buckling
fact, a "characteristic" length. The experiment does not wavelength. In varying the excursion length, it was found that
correspond fully to the geometry of Taylor [5] or Buckmaster there exists an optimum range of lengths for the most accurate
et al. (7, 81, however, it does shed light on the uniqueness of portrayal of the buckling phenomenon. This range was from I
the observed buckling wavelength. cm to 2 cm. If the excursion length was less. there was no

visible buckling, and if it was greater, the buckling became so
2 Experiment pronounced that the "waves" would collide. The effect of the

rate of compression is discussed in greater detail in the next
The experiment was designed to measure the buckling section.

wavelength of a viscous fluid layer and to determine quan- It is important to note that although the buckled layer has t
tiu'tively what parameters affect the wavelength. The ex- the appearance of a propagating gravity wave, it is not. This is
periment is shown schematically in Fig. 1. A layer of viscous demonstrated by the observation that after the partition has
fluid, floating on a relatively inviscid fluid, is compressed by stopped, the buckled shape remains stationary. In time, the
the partition. The partition extends into the inviscid fluid a amplitude decreases and eventually the layer reaches
distance on the order of the viscous layer's thickness and has a equilibrium again. In many cases the buckled shape and its
rate of compression u. The geometrical shape of the layer is wavelenith remained visible and could be photographed for
given by the slenderness ratio LLd where L And d are the up to 30 minutes after the compression stroke. As shown in
length and thickness of the unbuckled layer. The slenderness section 4, the observation that the amplitude of the buckled
ratio was varied from about 20 to 70 by changing the shape decreases away from the moving partition (Figs. 3, .t
thickness of the layer and leaving the length constant. can be explained by the fact that the layer is not uniformly

The experiment was carried out in an aluminum box with compressed. The nonuniform compression rate can be due to

Journal of Fluids Engineering MARCH 1984, Vol. 106 175



..4*

Fig. 3 Photograph showing the buckled layer as seen from above (the ___

parlition moves from left to right) sm- 11

the no-slip condition along the side wall, or to the inertia of Fig. 4(s) d=.394±.003 cm, L=16.36±.03 cm, u=42.3*.2 cms,
the fluid layer itself. P= 4ocSt

The buckling wavelength was measured photographically
using a camera triggered by the trailing edge of the pulse
created by the microswitch. Special lighting conditions were
needed in order to make the buckling wavelength easy to
measure on the photographs (Blake [15]). This system enabled
one side of a "wave crest" to be illuminated while leaving the
other side in darkness. The photograph then contained a series
of light and dark bands where one light and one dark band . .

together account for one wavelength. The sample photograph
shown in Fig. 3 has three bands, implying that the buckled
region extended one and one half wavelengths into the viscous
fluid layer. The other photographs contained between two _
and five bands (see also Fig. 4). """

In all the experiments involving data acquisition, Dow
Corning 200 silicone oil was used as the viscous fluid and• " distilled water as the inviscid substance. The silicone oil has " [' .. '

N several desirable attributes such as its small variation in

viscosity with temperature, its low surface tension, its im-

miscibility with water, and its availability over a wide range of
high viscosities. In addition, any intermediate viscosity can be
achieved simply by mixing a higher and lower viscosity in the 1't#. 1 = to roll
proper proportions. Since, as shown in the next section, the
buckling wavelength is not strongly dependent on viscosity, it
was not necessary to know the precise viscosity, therefore, the Fig. 44b) d=.264*.003 cm, L=16.35±.03 cm, u=32.6..2 cm/s,
oil viscosity reported in these experiments is the viscosity ,=10±4000cSt

calculated based on Dow Corning information. Furthermore, Flg. 4 Two separate experimental runs:

the experiments were run at room temperature, which is
within a few degrees of the temperature (75F) at which the accuracy of 0.003 cm with most of the error resulting from the

viscosity was measured. The viscosity of the silicone oil used meniscus on the edges of the oil layer. dse

in the experiments ranged from 101 to 10 centistbkes (cSt) Since the experiment sometimes took days to run, de-

where one centistoke is approximately the viscosity of water aerated (distilled) water was needed for the lower fluid.

and the units of stokes are centimeters squared per second. Otherwise bubbles of air would form under the layer of oil

Lastly, the silicone oil was demonstrated to be a Newtonian creating little bumps in the surface.

fluid by Suleiman and Munson (9].
To set up the experiment, a flat, uniform layer of the 4 Results

viscous fluid, of a prescribed thickness, must be placed on the Despite the fact that in the present experiment the motion
surface of the water. The method used was to put the silicone of the position is not mechanized, it is important to document
oil in a standard 100 ml burret with the following the effect of changes in the rate of compression u. It is also
modifications: the tapered end of the burret was ground off, important to report the minimum rate of compression
and the hole in the valve was drilled out to be the same size as necessary for buckling the layer. Referring to buckling in a
the tube. The burrer was held about a centimeter above the purely two-dimensional laver geometry, Taylor [5] stated that
surface of the water and the oil was allowed to drain out until when
the desired thickness was obtained. Depending on the
viscosity, it took from one to five hours to drain out the -4td-T>O (I)
required amount. This extremely slow pouring rate allowed the viscous sheet is unstable to disturbances of any

the oil to slowly creep across the surface of the water wavelength, where p and t are the viscosity and the rate of

providing a flat, smooth layer. Knowing the volume of oil and strain. The total surface tension T is the sum of the oil-air
the area of the layer, the thickness d could be calculated to an interface T,, and the %ater-oil interface T,,,. For two im-
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I/d length to thickness ratio (Ld) and viscosity (P). (Uncertainty in

Fig. 5 The weak dependence between buckling wavelength (A) and ,/d= ±0.06, in L/d= ±0.01, In ,= ±0.04 at 20:1 odds.)
rate of compression (u). (Uncertainty in \/d= =0.08, in 4

(pu/T)1

(L/d)= ±0.06 at 20:1 odds) by the nearly horizontal distribution of the data on Fig. 5. The

data was limited on the right by the inability to compress the

miscible liquids, the value of T,,o is approximately T.., - T0 , layer at a faster rate. This conclusion is further supported by

where T,,., is the surface tension of the water-air interface the results given in Fig. 6 where each datum is an average

(Suleiman and Munson 191, Davies and Rideal [161). obtained from three different rates of compression. In each

Therefor-, T= Toi + (T,_ - To,) = T,,.,, that is, the total set of three, thegroup4(pzvu/T)i'(L/d) varies with an average

surface tension T is just the surface tension of the water-air 55 percent increase from the smallest to the largest value.

interface. Upon substituting -ulL for e in Taylor's equation However, the corresponding values of X/d only have an
a e n isl baverage 5 percent increase, as indicated approximately by the-- " and rearranging, it is found that the layer buckles when

size of the circles. Thus for a variety of Lid ratios and
4(pul/T)l(LId)> 1 (2) viscosities it can be seen that the sizable change in

It should be noted that Taylor's conclusions do not apply 4(pvu/T)/ (L/d)has only a marginal, if any, effect on Xd.

exactly to the present experiment. As shown i.. Figs. 3 and 4, To determine the relationship between the buckling

the no-slip condition along the side walls gives rise to a three- wavelength and the slenderness ratio, a series of experiments

"' dimensional flow such that only the middle portion of the were conducted varying the thickness of the layer and using

buckled layer shows parallel waves and can be regarded different viscosity oils. The data were obtained in the

approximately as two-dimensional. Therefore, the sub- following manner. The partition was placed at the maximum

stitution e - ulL used to derive equation (2) can only be distance from the far end so that L = 16.4 cm. The box was

approximately valid. That - u/L is not the rate of strain filled with water and then a thin layer of oil was poured cnto

everywhere in the layer is demonstrated by the fact that the water surface from the burret. To obtain different

buckling does not occur throughout the layer but only near slenderness ratios more oil was added from the burret, and

the compressed end. Figures 3 and 4 show that sufficiently allowed to reach equilibrium. For cach slenderness ratio the

close to the partition, the bands (waves) are relatively constant layer was usually zompressed three times. Between each

size, hence, it is reasonable to assume that in that region the compression the partition was moved back to its initial
rate of strain is relatively constant. In cases where the position and the oil layer was given enough time to reach

"A photographed bands are unequal in size, the reported equilibrium again. For each change in %iscosity, the burret

wavelength was calculated by averaging the first two bands. was drained of the previous oil and the new viscosity oil was

, For this experiment the viscous fluid layer had a slenderness poured in.

ratio (Lid) of 25, a viscosity (P) of 3 x 10' cSt, a density (p) of The results of these experiments are graphed as X/d versus

0.975 g/cml, and a surface tension (T) of 72.8 dyne/cm. The Lid in Fig. 6. The plot contains three sets of points indicated

results of the experiment are given in terms of the buckling by an open circle and right and left half-filled circles for

wavelength to thickness ratio X/d versus 4(piuT)/(L/d) and viscosities of 103 cSt, 10cSt, and 101cSt, respectively. It is

graphed as shown in Fig. 5. The data fall into two categories: clear from Fig. 4 that X/d is dependent on Lid. For Lid less

points where the fluid buckled and points where the fluid did than 40 the slopes of the curves are almost unity, indicating

not. The cases in which buckling did not occur have no X/d that X is proportional to L. Due to the construction of the

value and are indicated with short vertical lines at the bottom experimental apparatus, the value of Lid could not be in-

of the graph. The large vertical line indicates the approximate creased beyond 65.-. : minimum value of 4(itvulT'}1(L/d) that will buckle the fayer. The effect of viscoir:- on the buckling % avelength can also L

This value is approximately 7, i.e.. greater than the value I be interpreted from the data in Fig. 6. rhe %alue ot d

appearing in equation (2' derived from Taylor's buckling decreases by about one-third when changing the viscosity

criterion (I). This discrepancy is not surprising in view of the from 10' cSt to 105 cSt and keeping Lid constant. Thit

' three-dimensional effects and nonuniform e that distinguish change is fairly consistent throughout the range of %alueo of

- the present experiment from Taylor's tsko-dimensional Lid. Within this range, then, the effect of viscosity on \/J is

geonetry. seen to be very slight.
An important result of the present experiment is the in- The error in the results presented here is governed primarily

dependence of Xid on the rate of compression, as witnessed by the measured vate of X. The % ariables d. L, and u hae all
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been calculated to within I percent. The other variables in- Research. The experimental apparatus and the in-
fluencing the results, although unknown precisely, remain strumentation were constructed by Mr. Karl A. Rupp,
constant throughout each experiment and therefore do not Michael Hacker and Mr. Richard C. Cowgill.
effect the overall trends shown in the graphs.
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